Виды стекловолокна и популярные изделия из него

Стекловолокно. Виды и применение. Производство и особенности

Стекловолокно – это распространенный материал на основе кварцевого песка. Он используется для изготовления стройматериалов, а также различных высокотехнологичных и прочных легких конструкций.

Из чего делают стекловолокно

Впервые стекольное волокно получились случайно. На производстве стекла произошла авария, при которой расплавленная масса была раздута подаваемым под давлением воздухом. В результате получились нити, отличающиеся некой долей гибкости. Это стало неожиданностью, поскольку толстое стекло после застывания является очень твердым. С тех пор прошло уже более 150 лет. Технология немного изменилась, но принцип остался прежним.

Для производства стекловолокна применяется кварцевый песок или битое стекло. Применяемая технология не подразумевает использования сложного оборудования, она является довольно простой. При этом получаемый материал обладает рядом свойств, зависящих от способа подготовки волокна.

Процесс изготовления стекловолокна заключается в выдувании из него тонких ниток. Для этого осуществляется разогрев битого стекла или кварцевого песка до температуры 1400°С. Расплавленная тягучая масса подается на формирующее оборудование. Если ее пропустить через центрифугу, то получится стекловата с переплетенными, замешанными между собой волокнами. Если же применять специальное сито с микроотверстиями, через которые масса выдувается под давлением пара, то получаются ровные длинные волокна. В дальнейшем они могут использоваться как сырье для изготовления сложных изделий.

Технические особенности
Стекловолокно имеет целый ряд положительных качеств, делающих его отличным сырьем для изготовления строительных материалов. К его неоспоримым достоинствам можно отнести:
  • Теплопроводность.
  • Устойчивый химический состав.
  • Высокую плотность.
  • Повышенную температуру плавления.
  • Устойчивость к горению.

Одним из самых важных достоинств стекловолокна является низкая теплопроводность. Это позволяет делать из данного сырья теплоизоляционные материалы. Из всей группы изделий, которые можно получить из данного сырья, самым лучшим теплоизолятором является стекловата.

Стекловолокно имеет высокую химическую устойчивость, поскольку практически полностью состоит из кварцевого песка. При воздействии на него щелочами отсутствует любая химическая реакция, что делает волокно практически универсальным для сочетания с любыми стройматериалами.

Нити имеют высокую плотность, которая составляет 2500 кг/м³. Однако благодаря тому, что они являются распушенными, готовые из них изделия имеют большой объем, при этом малый вес. Чтобы расплавить даже тонкие волокна, их необходимо разогреть до температуры как минимум 1200°С. Такое возможно только при целенаправленном воздействии горелки. Это негорючий материал, что позволяет его использовать для создания различных пожаробезопасных конструкций. Теоретически возможно воссоздание определенных условий, при которых отдельные сорта стекловолокна могут гореть. При этом они должны содержать связующие полимерные компоненты, что встречается редко.

Сфера применения стекловолокна
Стекловолокно очень распространенный материал, из которого изготовляют самые разнообразные изделия. Его используют практически во всех сферах:
  • Строительство.
  • Производство бытовых предметов.
  • Электроизоляция проводников.
  • Медицина.
Использование в производстве стройматериалов
Стекловолокно является сырьем для изготовления различных материалов. Из него делают:
  • Утеплительные маты.
  • Рулонную мягкую стекловату.
  • Штукатурную сетку.
  • Стекломаты.
  • Ткань.
  • Стеклопластик.
  • Стеклопластиковую арматуру.

Жесткие маты делают из стекловаты. Это достаточно плотный материал, применяемый для выполнения утепления фасадов. Кроме этого он при определенной длине нитей может выступать качественным звукоизолятором. Материал отличается стабильностью, но при его раскрое лучше пользоваться респиратором. Во время реза матов поднимается мелкая стекольная пыль. При попадании на кожу она вызывает ее раздражение, также такие частицы могут скапливаться в легких.

Рулонная стекловата является более гибким и менее плотным аналогом жестких матов. Она изготовлена аналогичным способом, однако сворачивается в рулон, что облегчает транспортировку. Ее используют в качестве теплоизоляционного материала, в частности совместно с металлическим профилем. Стекловата закладывается между направляющими, после чего закрывается отделочным материалом. Она в отличие от матов не может штукатуриться сверху, поэтому всегда должна применяться только с дальнейшим накрытием. Ее укладывают под кровлю, дощатый настил пола. В помещении на стенах ее закрывают гипсокартоном, на фасадах – металлическими панелями или вагонкой.

Особым спросом пользуется сетка из стекловолокна. Она применяется как армирующее изделие при выполнении штукатурных работ. Материал обладает высокой устойчивостью к растягиванию, что предотвращает появление трещин на стенах. Ее используют при выполнении внутренних и наружных штукатурных работ. Для отделки внутри помещения применяется сетка с небольшой плотностью от 80 г/м². Она выпускается в рулонах шириной 1 м. Сетка отличается достаточной гибкостью, но при сильном заломе ее волокна разламываются. Достоинство стеклосетки над обычной стальной штукатурной сеткой в том, что она не ржавеет. Со временем от нее на стенах не проявляются рыжие пятна.

Также из стекловолокна делают стекломаты. Их получают путем сложения между собой кусочков стеклянных волокон смешанных в произвольном направлении. Они скрепляются без использования клеящих составов. В результате смешанные иголочки поддерживаются между собой, обеспечивается надежная фиксация. Это армирующий материал, который ламинируется смолой. Из него можно создавать различные крепкие формы, к примеру, корпуса лодки. Для этого стекломаты и смола применяются как папье-маше.

Более легким и тонким аналогом стекловаты является стеклоткань. Она делается по аналогичной технологии с сеткой, но более сложным ткацким способом. В частности из нее состоят стеклообои и стеклохолст. Последний приклеивается на качественно оштукатуренную и шпаклеванную стену, после чего осуществляется ее покраска. Наличие стеклохолста препятствует образованию трещин, позволяет скрыть мелкие дефекты основания. Такая поверхность является ремонтопригодной.

Особым спросом пользуется стеклопластик, который помимо стеклянных волокон содержит в себе связующие смолы. Это очень прочный износоустойчивый материал, из которого делают самые разнообразные изделия. Примером такого использования является стеклопластиковая арматура. Она является аналогом стальной арматуры, используемой для армирования бетонных конструкций. Неоспоримым достоинством стеклопластикового изделия является низкая стоимость, небольшой вес, а также возможность транспортировки в виде скрученной бухты. Материал обладает аналогичной устойчивостью к разрыву, что и стальная арматура, при этом быстро разрезается даже ручной ножовкой по металлу.

Стекловолокно имеет очень широкое использование в строительстве, однако в последнее время уступает свои позиции базальтовой вате по направлению теплоизоляции. Это аналогичный материал, сделанный не из кварцевого песка, а базальта. Последний является более безопасным для человека, поскольку его волокна меньше осыпаются и раздражают слизистые оболочки и кожу. Однако при соблюдении определенных строительных норм возможно использование стекловолокна не только в промышленных зданиях, но и в жилых объектах.

Материал по-прежнему очень широко применяется для утепления трубопроводов. Что касается стеклообоев и штукатурной сетки, то ее применение абсолютно безопасно, поскольку в этом случае для ее производства используются длинные нити, а не короткие высыпающиеся волокна. Поэтому данные материалы являются неоспоримыми лидерами рынка.

Из стекловолокна с полимерными добавками получают стеклопластик, из которого делают корпуса судов и лодок, облегченные кузова гоночных машин. Это отличный материал для изготовления лыж, и даже емкостей для питьевой воды. Стеклопластик гораздо крепче обычной пластмассы, кроме этого он намного долговечнее. Он обладает лучшей устойчивостью к высоким температурам.

Использование в качестве изолятора

Из стекловолокна делают изоляцию для проводов. Она выступает непроницаемым диэлектриком. Изоляционная оболочка представляет собой сплетенную ткань, обмотанную вокруг проводника. Также огромным спросом пользуется оптоволокно, представляющее собой длинные цельные нитки с внешней ПВХ оболочкой.

Применение в медицине

Из стекловолокна изготавливают протезы и безопасные для здоровья импланты, которые могут контактировать с живыми тканями. В частности хорошо зарекомендовали себя зубные протезы. Стекловолокно при стабильной структуре, без осыпающихся частей, является абсолютно нейтральным для человека. Именно поэтому значительная часть медицинского оборудования и инструмента содержит стекловолоконные части. Материал применяется для изготовления хирургического лазерного скальпеля.

Применение в медицине подтверждает безопасность волокна для здоровья человека. Единственным исключением являются пыль и мелкие частицы волокон, которые втягивается в легкие человека из воздуха. Они окружают стекловату, а также образуются при распиле стеклопластика. Во всех остальных случаях материал абсолютно безопасен.

Виды стеклоткани – характеристики, состав, свойства, применение

Сегодня производят различные виды стеклоткани, нашедшие применение в промышленности, машиностроении, радиотехнике , строительстве, прочих отраслях. Производным сырьем является стекловолокно, получаемое из жидкого термически обработанного стекла со специальными добавками. Технология процесса сводится к получению тончайших волокон – путем протягивания расплавленной массы стекла через фильеры с микроотверстиями.

Образцы плетения стеклянных нитей

Волокна преобразуют в тончайшие нити (диаметр измеряется в микронах), разные по фактуре в зависимости от назначения. Например, они могут быть как шпагат, крученные, сетчатые, в виде полотна, шнуров, прочего. Благодаря микроскопической толщине исходного сырья, технологиям производства эти стеклянные микронити приобретают новое качество – гибкость. Это дает возможность вырабатывать из них разную по предназначению стеклоткань.

Характеристики стеклоткани, свойства

Примечательно, что некоторые свойства стекломатерии сродни исходнику (стеклу). Но в тоже время она имеет ряд прямо противоположных стеклу характеристик, делающих ее уникальной. Некоторые свойства можно охарактеризовать как редкие, даже эксклюзивные.

Рассмотрим главные из них:

    Превосходная гибкость стеклоткани дает возможность ей гнуться, не повреждаясь, не разбиваясь, как стекло и обретать запрограммированную форму. Материи присуща гибкость,эластичность

При этом отлично работать при механических воздействиях;

  • Экологичность, не токсичный материал, так как в составе не присутствуют вредные ингредиенты;
  • Стеклоткань не горит, не воспламеняется при непродолжительном воздействии открытого пламени. Виды стеклоткани особого назначения обладают повышенной термостойкостью, что делает возможным использовать их как огнеупорный композит;
  • Механическая прочность превосходит данный показатель по сравнению с металлической проволокой. Для этого достаточно сравнивать коэффициенты равные отношению прочности к объемной массе материалов;
  • Диэлектрические свойства присущи благодаря отсутствию свободных зарядов, что делает возможным использование ее, как изолирующей материи;
  • Геометрическая устойчивость создается в силу мизерного линейного расширения, поэтому при колебании температур, материя держится стабильно;
  • Материя не восприимчива к гниению, ультрафиолетовым лучам, химстойкая, легкая, долговечная, возможно использование ее в роли теплоизоляции;
  • Виды стеклоткани, применение

    Нынешний рынок представлен разновидностями материала стеклоткани с определенными характеристиками, составом, структурой, согласно назначению:

      Конструкционная стеклоткань вырабатывается из особого алюмоборосиликатного стекла с многообразной структурой сплетения. Для улучшения сцепления применяется пропитка формальдегидными, полиэфирными, эпоксидными, прочими смолами. Благодаря специфической технологии в итоге стекломатерия приобретает повышенную прочность при сравнительно малой массе. Конструкционный вид стекломатерии

    Конструкционная стеклоткань нашла широкое применение в автомобильных, судостроительных, иных сферах, применима при изготовлении стеклопластиков, прочих изделий. Наиболее востребованы марки T-11, T-13, T-14,T-23, T-24, прочие.

  • Базальтовая стеклоткань характеризуется способностью работать при значительном разбеге температурного режима. Нижний предел температуры с минусом (- 300°) до плюсовой (+680°) – при этом не меняя свои свойства. Это позволяет считать базальтовую стеклоткань многофункциональной тканью, что и определяет область ее использования. Она применима как гидроизоляционный и теплоизоляционный стройматериал при укладке трубопроводов тепло и водоснабжения, кровельных и спецработах. Виды стеклоткани очень многофункциональны в зависимости от характеристик входящих ингредиентов, поэтому и область применения разнопланова.
  • Электроизоляционная стеклоткань формируется определенным характером плетения нитей, что наделяет её значительными прочностными качествами. Кроме этого, ей свойственны диэлектрические, антикоррозийные характеристики, невозгораемость. Электроизоляционная разновидность работает, как диэлектрик

    Эти качества решают область применения – изолирующие материалы в области электрики, производство диэлектрических пластин, прочего. Также служит для изолирования трубопроводов, деталей, металлических емкостей, изготовления стеклопластиков и другого.

  • Кремнеземная стеклоткань, кварцевая незаменимы в сложных условиях, сопряженных с агрессивными средами, высоком температурном режиме (выше 1000°). Более того, она стабильна в отношении радиации, что позволяет прибегать к ее применению в этой сфере. Её с успехом применяют в качестве тепловых барьеров, она может заменить асбест, служить изолирующим материалом при высоком нагревании.
  • Фильтрационная стеклоткань имеет особую геометрию – расположение нитей диагональное, что при обычной своей прочности делает ее более эластичной. Применима ткань в газовой сфере, где необходимо фильтрование газа на фракции.
  • Радиотехническая стеклоткань имеет в своем составе вшитые металлические нити или тончайшую проволоку. Тем самым, стекломатериал позволяет препятствовать проникновению радиоволн и светового потока. Если необходимо такое требование при изготовлении товара, устройства, то востребован именно этот тип ткани.
  • Ровинговая стеклоткань – это скорее определение структуры стекломатериала, так как все вышеперечисленные виды плетутся из стекловолокон, сплетаемых в ткань. Маркировочный знак ее – ТР, представлены в рулонном либо листовом виде. Ей присущи все характерные свойства тканей и область применения распространена в судо — автостроении, прочих областях.
  • Стеклоткань для строительных работ применяется согласно проекту. На выбор вида стеклоткани влияет назначение (специфика) объекта строительства, виды общестроительных и спецработ. Её в строительстве используется в основном для изоляции трубопроводов(строительная стеклоткань). Многие мои знакомые часто называют стеклохолст и стеклосетку стеклотканью, что не совсем правильно. Так, усиливая (армируя) гипсовую штукатурку используют стеклосетку, она может использоваться и для армирования гидроизоляции. Так же для отделки стен и потолков во избежание возникновения трещин, поверхность оклеивается стеклохолстом. При устройстве мастичных кровель применяют стеклохолст (в местах примыканий, у воронок). Да, все эти материалы содержат в своем составе, как исходный материал, волокна из стекла, как и стеклообои, например, но это разные материалы.
  • Необходимо сказать о мерах предосторожности при работе и утилизации отходов. При нарезке микро частички стеклянных нитей могут попасть на открытые участки тела либо в дыхательные пути, что отрицательно скажется на самочувствии. Поэтому следует применять индивидуальные средства защиты, а отходы утилизировать в закрытой таре.
    Все виды стеклоткани являются исключительной производной стекла с многофункциональным спектром применения. По сделанному шаблону из гипса, глины, прочего возможно из нее, пропитав смолами, выполнить объемные полые элементы. Область применения велика, и здесь можно поставить многоточие, чтобы описать другие сферы использование в дальнейших публикациях.

    Топ 15 самых популярных вопросов о стекловолокне и материалах на его основе

    ВОПРОС: Что такое стекловолокно?

    Стекловолокно — это искусственное волокно, которое изготовляют из расплава неорганического стекла. Для его изготовления используют тоже сырье, что и для обычного стекла. Стеклянное волокно состоит из тонких нитей, которые не ломаются и легко гнутся без разрушения.

    Читайте также:  Спецодежда для строительства. Какую спецодежду лучше купить?

    ВОПРОС: Какие материалы выпускаются на основе стекловолокна?

    Стекловолокно — это уникальный материал, который стал основой для получения таких строительных материалов, как стеклохолст, стеклоткань, стеклопластик РСТ и др.

    Стеклохолст или полотно стекловолокнистое холстопрошивное типа ПСХ представляет собой многослойный холст, скрепленный вязально-прошивным способом переплетением «цепочка», «зигзаг» или «трико».

    Стеклоткань – представляет собой полотно, изготовленное на ткацком станке путем переплетения двух систем стеклянных нитей, расположенных взаимно перпендикулярно. В переплетении продольные нити называются основой, поперечные — утком. Виды стеклотканей – стеклоткани электроизоляционные; стеклоткани конструкционные; стеклоткани строительного назначения; стеклоткани кремнеземные; стеклоткани ровинговые.

    Стеклопластик рулонный марки РСТ представляет собой гибкий листовой материал, изготавливаемый из стекловолокнистых нетканных материалов, стеклотканей и полимерного связующего с добавками.

    Фольгированные материалы – это рулонные звуко-, термо-, гидро-, теплоизоляционные материалы с фольгированным, металлизированным и пленочным покрытием, получаемые методом каширования стеклянной основы алюминиевой фольгой и / или пленочными полимерными материалами.

    ВОПРОС: Области применения стекломатериалов?

    Стеклоткань – на сегодняшний день стеклоткань находит применение в качестве армирующего и конструкционного материала, из которого можно изготавливать несущие и ненесущие конструкции различного назначения (от небольших изделий для использования в быту и деталей автомобилей, до целых корпусов яхт и небольших сооружений), в качестве электроизоляционных материалов, для теплоизоляции и т.д. В первую очередь, из стеклоткани изготавливаются стеклопластики и разнообразные композитные материалы. Особые сорта стеклотканей обладают устойчивостью к высоким температурам, поэтому могут использоваться в качестве огнеупорных материалов, а также и радиационной устойчивостью. При этом стеклоткань технологична и довольно проста в использовании (даже в бытовых условиях), поэтому она занимает прочное место в самых разных областях — в строительстве, машиностроении, в радиотехнической отрасли, в легкой промышленности и т.д. И можно с уверенностью сказать, что в будущем роль стеклоткани будет только возрастать.

    Стеклохолст марки ПСХ-Т – используется для изоляции труб и оборудования в помещениях, на открытом воздухе, каналах, а так же в индивидуальном строительстве для теплоизоляции и звукоизоляции стен, потолков, полов, дверей, крыш, межэтажных перекрытий и т.п.

    Стеклопластик рулонный марки РСТ – предназначен для применения в качестве покровного слоя теплоизоляции трубопроводов, находящихся внутри и вне помещений.

    Фольгированные материалы – фольма-ткань, фольма-холст, фольгоизол СРФ предназначены для использования в строительных конструкциях промышленной тепловой изоляции в качестве покровного слоя теплоизоляции трубопроводов и теплоизоляционного слоя с парозащитным теплоотражающим покрытием.

    ВОПРОС: Какими главными преимуществами обладают стекломатериалы?

    Основными преимуществами материалов на основе стекловолокна являются – механическая прочность, устойчивость к высоким температурам, высокие электроизоляционные характеристики, устойчивость к процессам коррозии, высокая стабильность размеров после последующей переработки.

    ВОПРОС: При каких температурах применяются стекломатериалы?

    Диапазон рабочих температур — это показатель минимальной и максимальной температуры, при которых происходит нормальная работа материала:

    Рабочая температура — Стеклоткань от – 200°С до +400°С.

    Рабочая температура — Стеклохолст ПСХ-Т от – 200°С до +400°С.

    Рабочая температура — Стеклоткань кремнеземная от – 200°С до +1100°С.

    Рабочая температура — Стеклопластик рулонный марки РСТ от – 200°С до +300°С.

    Рабочая температура — Фольгированные материалы (фольма-ткань фольма-холст, фольгоизол СРФ) от – 200°С до +200°С.

    ВОПРОС: Подлежат ли стекломатериалы обязательной пожарной сертификации?

    Согласно статьи 146 Федерального закона от 22.07.2008 года № 123 ФЗ «Технический регламент о требованиях пожарной безопасности» стекломатериалы обязательному подтверждению соответствия требованиям указанного регламента НЕ ПОДЛЕЖАТ.

    ВОПРОС: Являются ли стекломатериалы водонепроницаемыми?

    Без дополнительной обработки полимерами стекломатериалы не является водонепроницаемыми за исколючением фольгированных материалов.

    ВОПРОС: Что обязательно нужно знать при выборе стекломатериалов?

    Перед приобретением стеклотканей различных марок или стеклопластиков марки РСТ воспользуйтесь памяткой – Будьте бдительны «Большие хитрости маленьких производителей или поставщиков» – скачать на главной странице сайта.

    ВОПРОС: В чем разница стекломатериалов, выпускаемых по ГОСТу и ТУ?

    ГОСТ это государственный стандарт. Для создания ГОСТа задействуются многие институты, предприятия, эксперты. Проводятся многочисленные эксперименты, тесты, испытания. После выработки и подтверждения стандарта его утверждает Госстандарт России – организация с правами министерства, которая не только проверяет и утверждает ГОСТ, но и ревностно следит за тем, чтобы производители его соблюдали.

    ТУ сокращение от «технические условия», которые формирует сам производитель, то есть в отличие от ГОСТа может быть добавлены в изделие другие комплектующие (составляющие) которые существенно не влияют на свойства изделия, но могут придавать ему другие качества.

    ВОПРОС: Области применения стекломатериалов, выпускаемых по ГОСТу и ТУ?

    Стеклоткани, выпускаемые по ГОСТу предназначены для использования в военно-промышленном комплексе, машиностроении, авиастроении и т.п. Стеклоткани, выпускаемые по ТУ имеют общестроительное назначение.

    ВОПРОС: Особенности монтажа покровных материалов на трубопроводы?

    При монтаже на трубопроводах покрывного слоя из стеклоткани, стеклопластика РСТ и фольгированных материалов – рекомендуется воспользоваться памяткой «Руководство по монтажу» – скачать на странице сайта в разделе продукция.

    ВОПРОС: Как рассчитать количество покровного слоя на трубопроводе?

    Согласно рекомендациям справочника строителя «Тепловая изоляция» под редакцией Кузнецова Г.Ф. 4-е издание дополнительное и переработанное – Москва «Стройиздат» 1985 года с. 163-165, на основании формулы определения длинны окружности или периметра круга. Или воспользоваться калькулятором расчета количество покровных материалов для изоляции трубопроводов.

    ВОПРОС: Сколько метров в одном рулоне стекломатериалов?

    Технические показатели на рулонные материалы должны соответствовать требованиям настоящего стандарта и нормативного документа на конкретный вид материала:

    Фольма-холст длина в одном рулоне состовляет — 15 метров.

    Фольма-ткань длина в одном рулоне состовляет — 100 метров.

    Стеклохолст ПСХ-Т длина в одном рулоне состовляет — 20 метров.

    Фольгоизола марки СРФ длина в одном рулоне состовляет — 20 метров.

    Стеклопластик рулонный марки РСТ длина в одном рулоне состовляет — 100 метров.

    Стеклоткань различного назначения длина в одном рулоне состовляет в зависимости от марки от 100 – до 300 метров.

    ВОПРОС: Что означает буква «Р» и «П» в маркировке стеклотканей?

    В марке стеклоткани Т-23Р буква «Р» после цифры указывает тип станка, вырабатывающего ткань (пневморапирный). В марках электроизоляционных и конструкционных стеклотканей буква «П» после цифры указывает, что ткани вырабатываются на бесчелночных ткацких станках с перевивочной кромкой.

    ВОПРОС: В чем разница между стеклохолстами ПСХ-Т и ИПС-Т?

    Полотно стеклянное холстопрошивное ПСХТ-450 представляет собой многослойный холст, состоящий из беспорядочно расположенных стеклянных волокон, скрепленных вязально-прошивным способом. А иглопробивное полотно представляет собой стеклохолст, сформированный аэродинамическим способом, волокна которого скреплены многократным иглопрокалыванием.

    Стекловолокно и изделия из него

    Стекловолокном называют материал, полученный из расплавленного стекла путем выдавливания из него тонких нитей.

    Стекловолокно обладает редким сочетанием свойств: высокой прочностью при растяжении и сжатии, негорючестью, нагревостойкостью, малой гигроскопичностью, стойкостью к химическому и биологическому воздействию. Из него изготовляют материалы с высокими электро-, тепло-, звукоизоляционными свойствами и механической прочностью. На основе стекловолокнистых материалов изготавливаются различные виды изделий, которые успешно заменяют традиционные материалы,а также, имеют только им присущие области применения.

    Различают два вида стекловолокна: непрерывное – длинной сотни и тысячи метров и штапельное – длинной до 0,5 м. По внешнему виду непрерывное волокно напоминает натуральный или искусственный шелк, а штапельное – хлопок или шерсть. Изделия из непрерывного волокна имеют вид однонаправленных волокон, тканых материалов, нетканых материалов и волокнистых световодов.

    Однонаправленное стекловолокно представляет собой короткие пряди волокон или комплексных нитей, срезанных с бобин. Длина однонаправленного волокна изменяется в зависимости от периметра бобины или барабана, на который оно наматывается. Однонаправленное волокно с бобин имеет диаметр 5-10 мкм и длину не менее 0,5 м.

    Тканые материалы получают в ходе текстильной переработки стекловолокна: размотки комплексной нити с бобин с комплексной круткой трощения нитей и вторичной их крутки, подготовки нитей к ткачеству и изготовления тканых материалов на ткацких станках. Для текстильной переработки используются волокна диаметром 5-10 мкм. Волокна большего диаметра имеют пониженную прочность при изгибе и чаще ломается в ходе текстильной переработки.

    Нетканые материалы из непрерывного стекловолокна – жгут, холсты из рубленных и непрерывных нитей, ленты из склеенных нитей и стекловолокнистые анизотропные материалы. Жгут представляет собой прядь, состоящую из большого числа комплексных стеклянных нитей, холсты – рулонные нетканые материалы. В жестких холстах хаотически расположенные нити или обрезки нитей скреплены смолами, в мягких холстах – механической прошивкой. Первичные нити или жгуты могут быть склеены в длинные ленты.

    При упорядоченной намотке нитей и жгутов на барабаны и одновременном нанесении связующего получают анизотропные материалы, свойства которых в разных направлениях различны. Эти материалы могут быть как рулонные при непрерывном способе производства, так и листовыми – при периодическом. Для нетканых материалов могут применяться волокна диаметром до 20 мкм.

    Виды изделий из штапельного волокна.

    Штапельные волокна различаются по длине элементарных волокон (длинноволокнистые и коротковолокнистые) и по их диаметру. По диаметру различают: микроволокно (0,5 мкм), ультратонкое (0,5-1,0 мкм), супертонкое (1-4 мкм), утолщенное (11-20 мкм) и грубое (20 мкм и более).

    На основе коротковолокнистых штапельных волокон получают вату, рулонные материалы, маты, плиты и скорлупы. Все эти материалы состоят из хаотически перепутанных волокон. Волокно, осажденное вместе с органическими синтетическими материалами на конвейерной ленте, после обработки принимает вид непрерывного ковра толщиной 20-100 мм.

    Рулонный материал представляет собой длинный кусок ковра, свернутый в рулон. Маты и плиты получают из неподпрессованного ковра. Маты в ряде случаев простегиваются нитями из непрерывного стеклянного волокна, тогда толщина из может быть уменьшена до 5 мм. Плиты покрываются с одной или обеих сторон стеклянной тканью.

    Из длинноволокнистых штапельных волокон изготовляют холсты, сепараторные пластины, бумагу. Эти материалы (толщиной 0,5-1,5 мм) могут быть свернуты в рулоны или нарезаны на пластины. Для повышения механической прочности они могут армироваться нитями их непрерывного волокна. Из длинноволокнистых волокон получают по аналогии с шерстью штапельную крученую пряжу, ровницу и при последующей текстильной переработке – штапельные ткани, сетки, ленты. Свойства изделий из штапельного волокна в значительной степени зависят от диаметра волокна, состава стекла и вида связующего материала.

    Способ производства стекловолокна.

    Способы выработки стекловолокна классифицируется по двум основным принципам его формования:

    • утоньшения струйки стекломассы в непрерывное элементарное волокно;
    • разделения и расчленения струи расплавленного стекла, сопровождаемых вытягиванием коротких волокон.

    Вытягивание волокна из струйки стекломассы может производиться как механическим путем, так и воздухом или паром. Каждый из этих способов может быть одно- или двухстадийным. При двухстадийном процессе стеклянное волокно вырабатывается из стеклоплавильных сосудов или печей, питаемых стеклянными шариками, штабиками или эрклезом. При одностадийном процессе стеклянное волокно вырабатывается из стекловаренных печей, питаемых шихтой. Механическое вытягивание волокна может осуществляться с помощью барабана, съемных бобин, вытяжных валков или прядильной головки. Способы разделения струи расплавленного стекла делятся на три группы: способы раздува, центробежные и комбинированные.

    Состав и свойства стекол для изготовления стекловолокна.

    В зависимости от области применения непрерывного стекловолокна требования к его химическому составу могут быть различными. Для электрической изоляции употребляется только бесщелочное (или малощелочное) алюмосиликатное или алюмоборосиликатное стекло; для конструкционных стеклопластиков применяют главным образом бесщелочные магнийалюмосиликатные или алюмоборосиликатные стекла; для стеклопластиков неответственного назначения можно использовать и щелочесодержащие стекла.

    Процесс формирования непрерывного стеклянного волокна предъявляет к стеклу ряд требований: интервал вязкостей, в котором устойчиво протекает формирование непрерывного стеклянного волокна из стекол обычных составов.

    Основными требованиями, предъявляемыми к стеклам для производства штапельного волокна, являются малая вязкость при температуре выработки и низкое поверхностное натяжение. В зависимости от способа выработки и назначения штапельного волокна применяют стекла различных составов, однако все они отличаются высоким содержанием оксидов щелочноземельных металлов.

    Физико-химические свойства неорганических волокон и материалов на их основе.

    Механические свойства. Стекловолокно значительно превосходит по механической прочности исходное (массивное) стекло и незначительно отличается от него по некоторым физическим параметрам.

    Механические свойства стеклянных волокон зависят от химического состава стекла, метода производства, окружающей среды и температуры. Метод производства оказывает большое влияние на прочность стеклянных волокон: высокой прочностью обладают волокна, вытянутые с большой скоростью из расплавленного стекла (вытягивание из фильер), наименьшей прочностью – волокна, полученные штабиковым способом и раздувом. При формовании волокна из фильер образуется меньше поверхностных дефектов и трещин, чем обусловливаются их лучшие механические свойства, главным образом прочность.

    Прочность при растяжении стекловолокна зависит от его состава и диаметра

    Наибольшей прочностью обладают непрерывные волокна из кварцевого и бесщелочного магнийалюмосиликатного стекла. Повышенное содержание щелочей в стекле резко снижает прочность стеклянных волокон. Кристаллизация стекла и присутствие в стекломассе мелких газовых включений понижает прочность стеклянного волокна на 25-30%.

    Максимальная прочность стеклянных и кварцевых волокон, испытанных в среде жидкого азота, приближается к расчетной теоретической прочности стекла и плавленого кварца.

    В зависимости от диаметра и состава стекла техническая прочность стеклянных волокон при их формировании современными промышленными методами составляет 25-30 % теоретической прочности стекла.

    Модуль Юнга стеклянных волокон составляет 6-11 ГПа и выше. Разрушающее напряжение при изгибе и кручении повышается с уменьшением диаметра волокон.

    Изделия из стекловолокна плохо работают при многократном изгибе и истирании, однако, стойкости к изгибу и истиранию повышаются после пропитки лаками и смолами. Склеивание волокон в нити повышает прочность нити на 20-25 %, а пропитка стекловолокнистых материалов лаками – на 80-100 %.В сухом воздухе прочность стеклянных волокон резко повышается. Смачивание стеклянных волокон и изделий из них неполярной углеводородной жидкостью аналогично действию сухого воздуха и дает наибольшее значение прочности. Значительное (до 50-60 %) понижение прочности стеклянных волокон и изделий из них происходит при адсорбции ими воды и водных растворов поверхностно-активных веществ. Это объясняется тем, что молекулы веществ, адсорбируемых на стеклянных волокнах, способствуют образованию трещин в слабых местах поверхностного слоя.

    Читайте также:  Фиксаторы защитного слоя - Звёздочка, Треугольник, Стульчик

    При погружении химостойких стекловолокнистых материалов в воду прочность их снижается, но после высушивания полностью восстанавливается. Изделия из стеклянного волокна натрийкальцийсиликатного состава, содержащие более 15 % (мас.) оксидов щелочных металлов, после пребывания во влажном воздухе или в воде снижают прочность необратимо в связи с интенсивным выщелачиванием и разрушением. При длительном действии деформирующего усилия у стеклянных волокон развивается упругое последствие, которое зависит от химического состава стекла и относительной влажности воздуха. Влага снижает также сопротивления стеклянных волокон изгибу и трению.

    При нагревании стеклянной ткани до 250-300°С прочность ее сохраняется, в то время как волокна органического состава при этой температуре полностью разрушаются.

    При низких и высоких температурах устраняется адсорбционное воздействие влаги воздуха на стеклянные волокна, что приводит к повышению их прочности. Однако после термической обработки (нагрев до различных температур и последующее охлаждение) прочность стеклянных волокон и тканей снижается на 50-70 %.

    Состав стекла оказывает значительное влияние на прочность стеклянных волокон, подвергнутых термообработке. Волокна из натрийкальцийсиликатного и боратного стекол теряют свою прочность при термообработке, начиная уже с 100-200°С, волокна из кварцевого, кремнеземного и каолинового стекла теряют прочность на 50 % при нагреве до 1000°С и последующем охлаждении.

    Прочность волокон из бесщелочного стекла значительно снижается при 300°С; прочность кварцевых волокон при этой температуре практически не изменяется.

    После нагрева и охлаждения стеклянных волокон наблюдается небольшое повышение их плотности и показателя преломления.

    Нагревостойкость. Стеклянное волокно обладает высокой нагревостойкостью , которая зависит от химического состава стекла . Температурная область применения стеклянных волокон натрийкальцийсиликатного состава ограничена температурами 450-500°С, при более высоких температурах начинается их спекание. Для бесщелочных волокон нагревостойкость выше на 200-300°С и составляет 600-700°С.

    Гигроскопичность отдельных стеклянных волокон около 0,2 % (мас.). Поглощение влаги стеклянной тканью значительно выше, так как влага адсорбируется зазорами между волокнами и замасливателем. Гигроскопичность ткани зависит от характера переплетения нитей и химического состава стекла, например ткани из волокна натрийкальцийсиликатного состава обладают гигроскопичностью до 3-4 %.

    Химистойкость теклянных волокон не зависит от их диаметра, но абсолютная растворимость тонких волокон выше растворимости толстых вследствие большего отношения их поверхности к массе. Поэтому при воздействии агрессивных реагентов волокна разрушаются быстрее, чем массивное стекло.

    Прочность стеклянных волокон в различных агрессивных средах (горячая вода, водяной пар высокого давления, кислоты, щелочи) зависит от химического состава стекла. Наибольшей прочностью и высокой стойкостью к горячей воде и пару обладают волокна из бесщелочного алюмоборосиликатного и магнийалюмосиликатного стекла. По гидролитической классификации этот вид стекла относится к «стеклам, не изменяемым водой».

    Материалы из стеклянного волокна, содержащего в своем составе щелочи, значительно теряют прочность при многократной обработке горячей водой или водяным паром даже нормального давления. В этом случае имеет место интенсивное выщелачивание, приводящее к полному распаду структуры стекла.

    При длительном воздействии водяного пара различного давления резко снижается прочность материалов и из волокна бесщелочного алюмоборосиликатного стекла. Наиболее стойкими в этих условиях являются стеклянные ткани из бесщелочного безборного стекла.

    Стеклянные ткани и волокна из бесщелочного стекла нестойки к воздействию кислот. При обработке кислотой волокон из бесщелочного стекла все компоненты его растворяются и остается лишь малопрочный кремнекислородный скелет.

    Высокой стойкостью к воде, пару высокого давления и различным кислотам (кроме плавиковой) обладают волокнистые материалы кварцевого, а также кремнеземного и каолинового состава.

    Стекловолокно

    Неорганическое стекловолокно – это популярный многофункциональный материал, применяемый в различных сферах деятельности человека.

    Стекловолоконная продукция отлично зарекомендовала себя как утеплитель для стен и пола,ее используют для отделки помещений самого разного назначения.

    Из него производится разнообразная строительная, промышленная и другая продукция.

    Интересен материал и тем, что может производиться из вторичного сырья.

    Технологический процесс получения стекловолокна довольно прост.

    Древние жители Египта, которые первыми выплавили стекло из смеси песка, извести и соды, могли получать стеклянные волокна, но промышленную технологию производства стекловолокна изобрел Джон Плаер в далеком 1870 году.

    С тех пор производство этого материала совершенствовалось с каждым годом и его стали использовать при изготовлении огромного ассортимента изделий.

    В этой статье мы рассмотрим свойства и характеристики стекловолокна из стекольного боя, области его применения и виды продукции, которые изготавливают из этого материала.

    Из чего делают стеклянные нити?

    Классический технологический процесс получения стекловолокна основан на выдувании стеклянных нитей из расплавленной при высокой в 1400 °C температуре смеси кварцевого песка, соды, извести и других специальных добавок.

    Полученное жидкое стекло раздувается паром при выбросе из центрифуги или продавливается через фильеры (специальные платиновые сита с микроотверстиями) и на следующем этапе охлаждается.

    При использовании центрифуг конечным продуктом является стекловата, а при применении фильеров — стеклянные нити, которые в дальнейшем идут на изготовление разнообразной продукции.

    Возможность получения стеклянных волокон была открыта совершенно случайно. Авария на воздухопроводе привела к попаданию в расплав стекла струи воздуха под давлением, что привело к появлению стеклянных нитей. Этот факт и способствовал изобретению технологии производства стекловолокна.

    Описанный выше техпроцесс получения стекловолокна является классическим из исходного природного сырья. Но эту же продукцию можно получать и из отходов стекла.

    Рециклинг стеклянных изделий позволяет значительно снизить себестоимость конечного продукта, что дает конкурентные преимущества производителю, выбравшему такой способ производства стекловолокна.

    Технология производства в этом случае практически не отличается от вышеприведенной, только вместо смеси природных компонентов плавится отсортированный бой стекла с соответствующими присадками.

    Количество стеклянного боя в исходном сырье для производства стекловолокна может составлять до 90% общего объема. Это открывает широкие возможности для организации бизнеса по изготовлению стекловолокна на основе отходов стекла.

    Свойства и характеристики

    Использование стекловолокна в промышленности и строительстве обусловлено его отличными техническими характеристиками и свойствами. Именно они и привели к высокой популярности этого материала.

    Ниже мы рассмотрим основной перечень технических характеристик и потребительских качеств изделий из стеклянных волокон:

    Теплопроводность

    Стекло само по себе имеет очень низкую теплопроводность, поэтому изделия из него обладают отличными теплоизоляционными свойства.

    Самым низким коэффициентом среди всех изделий из стекловолокна обладает стекловата. Для этой продукции он составляет 0,05 Вт/м*К, что и определяет сферы ее использования.

    Стекловата применяется для термоизоляции различных строительных конструкций, трубопроводов, промышленных объектов и т. д.

    Химический состав

    Эта характеристика зависит от состава исходного сырья. В любом неорганическом стекле основным компонентом является кварцевый песок, поэтому содержание SiO2 в стеклянных нитях варьируется от 50% до 99% в зависимости от их назначения.

    Кроме этого компонента в стеклянном волокне присутствуют Al2O3, CaO и некоторые другие соединения.

    От химического состава зависят физические характеристики стекловолокна и свойства изделий из него. В частности — щелочестойкость, которая определяется содержанием диоксида циркония (ZrO2) в стекле. Чем больше этого компонента, тем более щелочестойким является стекловолокно.

    Плотность

    Этот параметр непосредственно у стеклянных нитей подобен плотности стекла, из которого они изготовлены и равен 2500 кг/м³.

    Плотность изделий из стеклянных волокон может колебаться в широких пределах. У стекловаты она минимальна, а такие продукты из этого материала, как листы, ткань и т. д. имеют максимальную плотность.

    Для комбинированных материалов, таких как стеклопластик, плотность рассчитывается на основании плотности исходных материалов.

    Температура плавления

    Плавится любое стекловолокно при температуре от 1200 до 1400 °C.

    Температура плавления зависит от состава стекла, из которого изготовлены волокна.

    Чем больше в составе кварцевого песка, тем выше температура плавления. Поэтому для качественной переработки стеклянных отходов в стекловолокно необходимо точно знать его химический состав.

    Стойкость к возгоранию

    Стекло — полностью негорючий материал, поэтому изделия из него не способны поддерживать горение.

    Все это в полной мере относится и к стеклянным волокнам – стекловолоконная продукция является пожаробезопасным материалом. Правда, некоторые композитные материалы, изготовленные на основе стекловолокна, могут возгораться при определенных условиях.

    Таким образом, горит стекловолокно или нет, зависит от марки и компонентов, входящих в их состав.

    Химические и физические характеристики стекловолокна определили виды продукции, которые можно изготовить из этого материала.

    Марки

    Перечень марок стекловолокна с соответствующими им характеристиками вы можете увидеть в таблице:

    Ниже мы рассмотрим основные типы изделий из стеклянных волокон, наиболее популярные на современном рынке.

    Материалы из стекловолокна

    Среди всего разнообразия продукции из стеклянных волокон можно выделить две основные категории изделий: продукцию на 100% состоящую из этого материала и композитную, содержащую дополнительные вещества и элементы.

    Рассмотрим некоторые изделия обоих видов и их характеристики.

    1. Маты из стекловаты. Эта продукция предназначена для теплоизоляции и шумопоглощения как в строительстве, так и в промышленной сфере. Структура теплоизоляционных матов состоит из ненаправленных отрезков стеклянных нитей, скрепленных между собой естественными силами. Продукция на 100% изготавливается из стекловолокна.
    2. Рулонная стекловата. Продукт полностью идентичный матам по своему составу и способу производства, только свернутый в рулоны. Для выполнения некоторых видов работ по теплоизоляции объектов такая форма поставки является более предпочтительной, чем маты.
    3. Сетка из стекловолокна. Изделие предназначено для армирования различных поверхностей при проведении отделочных работ. Состоит из гибких стеклянных нитей, переплетенных между собой и покрытых специальным раствором. Сетка выпускается как в листах, так и в рулонах различного размера.
    4. Ткань из стекловолокна. Эта продукция аналогична сетке из стекловолокна, только у нее более плотное плетение тонких стеклянных нитей. Изготавливается это изделие по ткацкой технологии в разнообразных исполнениях. Стеклоткань имеет широкую сферу применения: изготовление обоев, в частности стеклохолстов «паутинка», электротехнические работы и т. д.
    5. Стеклопластик. Это композитный универсальный материал, состоящий из стеклянных волокон и специальных связующих смол. Области использования стеклопластика самые разнообразные. Из него можно изготовить любые детали способом формовки и другими технологическими приемами.
    6. Стеклопластиковая арматура — достойная альтернатива металлическому аналогу, способная заменить его во всех сферах применения.

    Конечно, это далеко не полный перечень продукции из стеклянного волокна.

    Стекловолокно нашло применение в строительстве, электротехнике, радиотехники, медицине и других областях промышленности.

    Следует заметить, что для производства тех или иных изделий используется стекловолокно разных марок, изготовленное по разным технологиям, имеющее различную длину и толщину нитей.

    Штапельные стеклянные нити (короткие отрезки) применяются для производства стекловаты, рубленые из длинных волокон — для изготовления стеклопластика, а длинные (бесконечные) нити стекловолокна — для получения тканей и сеток.

    Сферы применения

    Стекловолоконная продукция используется в различных областях деятельности человека. Выше были описаны некоторые из них.

    Рассмотрим этот вопрос подробнее, для каждой отрасли отдельно с перечнем основных изделий из стекловолокна, предназначенных для выполнения определенных работ, а также предметов, комплектующих и конструкций, которые могут быть изготовлены на основе стеклянных нитей.

    Строительная индустрия

    В строительстве стекловолоконные изделия используются в первую очередь для теплоизоляции:

    • жилых помещений;
    • промышленных зданий;
    • трубопроводов и других объектов.

    Для этих целей используются:

    • маты;
    • рулоны из стекловаты;
    • листовое стекловолокно.

    Для изготовления различных конструкций в строительной индустрии широко используется и стеклопластик — композиционный материал, состоящий из стекловолокна и полимеров.

    Из него производятся разнообразные панели, плиты, в том числе теплоизоляционные, и другие защитные архитектурные элементы.

    Стеклообои нашли свое применение в отделочных работах. Они изготавливаются из стекловолоконной ткани с различной структурой переплетения нитей.

    Для штукатурных работ используется сетка из стеклянных волокон. Огнеупорное керамическое стекловолокно применяется в качестве теплоизоляции котлов, футеровки дымоходов, воздуховодов, стен и сводов нагревательных, термических печей.

    Производство товаров

    Стеклопластик широко используется в судостроении, производстве автотехники и других отраслях промышленности, где легкость, простота обслуживания, устойчивость к коррозии и низкая цена деталей являются определяющими факторами.

    Из него изготавливаются корпуса и покрытия для лодок и яхт, элементы автомобилей, корпуса приборов и т. д.

    Стеклопластиковые бассейны, емкости под воду, септики, лыжи, и другие товары прочно вошли в быт современного человека.

    Ассортимент продукции из стеклопластиков огромен.

    Электротехника и электроника

    Стеклянное волокно используется для изготовления разнообразных электроизоляционных материалов.

    Стекло является отличным диэлектриком, поэтому нити из него применяются при производстве специальных тканых материалов для изоляции токопроводящих конструкций и проводников электрической энергии.

    Покрытый медной фольгой стеклотекстолит (смесь стеклянных волокон с эпоксидными смолами) является основой для изготовления многослойных печатных плат электронных устройства.

    Оптоволокно, широко используемое в электронике, также является стекловолокном, изготовленным из кварцевого стекла.

    Медицина

    Стеклопластика применяется при изготовлении протезов различных частей человеческого тела, а также некоторых видов имплантов без вреда для здоровья. В стоматологии стеклянное волокно используется для изготовления зубных протезов. Во многих медицинских инструментах и оборудовании стекловолокно в различном виде присутствует как основной или второстепенный конструкционный материал. Одним из главных элементов хирургических лазерных скальпелей является все то же стекловолокно высокой степени очистки.

    Из выше представленной информации можно сделать однозначный вывод, что стекловолокно, как основа для производства разнообразной продукции, является очень востребованным материалом в настоящее время.

    Что можно сделать своими руками?

    Для самостоятельного творчества стекловолокно является отличным материалом.

    В основном поделки своими руками изготавливаются из стекловолоконных тканей и различных связующих смол: эпоксидного клея, полиэфирных смол и других синтетических наполнителей.

    Что же можно изготовить из стеклоткани самостоятельно? Да все что угодно, от простой подставки для чайника до корпуса самодельной лодки или автомобиля. Все зависит от вашего желания и фантазии.

    Самым простым способом изготовления любых деталей или конструкции из стекловолоконной ткани является технология послойного нанесения тканевой основы на модель с проклейкой каждого слоя эпоксидной смолой.

    Читайте также:  Как сделать наливной пол своими руками - технология заливки

    Этот метод позволяет создать практически любую конструкцию со сложной поверхностью из стеклопластика своими руками.Это может быть панель прибора, бампер автомобиля или катер.

    Главное — правильно подготовить модель, на которую вы будете накладывать и склеивать слои стеклоткани.

    Ее можно изготовить из пластилина, глины, дерева или других легкообрабатываемых материалов.

    Модель следует обмазать жидким парафином для облегчения снятия готового изделия.

    Каждый слой стекловолокна проклеивается эпоксидным клеем и вся конструкция снимается с модели после полного затвердевания.

    Заготовка обрезается по контуру, шлифуется и если необходимо в ней прорезаются отверстия, после этого деталь готова.

    В этом описании нет привязки к конкретному изделию и коротко рассказано об общем принципе изготовления любых изделий из стекловолокна своими руками.

    Видео по теме

    В данном видео описан процесс послойного склеивания листов ткани из стекловолокна для изготовления различных изделий.

    Заключение

    Минеральное стекловолокно – это универсальный материал, который используется для производства огромного количества изделий во многих областях хозяйственной деятельности человечества.

    Рынок сбыта этого уникального продукта практически неограничен, при условии конкурентоспособной цены. Рециклинг отходов стекла и переработка стекольного боя в изделия из стекловолокна позволяют создать рентабельный бизнес с низкой себестоимостью продукции.

    Rules26 › Блог › Стеклопластики. Их свойства. Производство. Методы изготовления.

    Доброго времени суток.
    Сегодня будем повышать культуру производства. Обязательно к прочтению 🙂 особенно новичкам.

    Стеклопластик — композиционный материал, состоящий из стеклянного наполнителя и синтетического полимерного связующего. Наполнителем служат в основном стеклянные волокна в виде нитей, жгутов (роввингов), тканей, матов, рубленых волокон; связующим — полиэфирные, феноло-формальдегидные, эпоксидные, кремнийорганические смолы, полиимиды, алифатические полиамиды, поликарбонаты и др. Для стеклопластика характерно сочетание высоких прочностных, диэлектрических свойств, сравнительно низкой плотности и теплопроводности, высокой атмосферо-, водо- и химстойкости. Механические свойства стеклопластика определяются преимущественно характеристиками наполнителя и прочностью связи его со связующим, а температуры переработки и эксплуатации — связующим.

    Наибольшей прочностью и жёсткостью обладают стеклопластики, содержащие ориентированно расположенные непрерывные волокна. Такие стеклопластики подразделяются на однонаправленные и перекрёстные; у первых волокна расположены взаимно параллельно, у вторых — под заданным углом друг к другу, постоянным или переменным по изделию. Изменяя ориентацию волокон, можно в широких пределах регулировать механические свойства стеклопластиков.

    Большей изотропией механических свойств обладают стеклопластики с неориентированным расположением волокон: материалы на основе рубленых волокон, нанесённых на форму методом напыления одновременно со связующим, и на основе холстов (матов). Диэлектрическая проницаемость стеклопластиков 4-14, тангенс угла диэлектрических потерь 0,01-0,05.

    Изделия из стеклопластика с ориентированным расположением волокон изготавливают методами намотки, послойной выкладки или протяжки с последующим автоклавным, вакуумным или контактным формованием либо прессованием, из пресс-материалов — прессованием и литьём.
    Примеры изделий из стеклопластика

    Стеклопластик применяют как конструкционный и теплозащитный материал при производстве корпусов лодок, катеров, судов и ракетных двигателей, кузовов автомобилей, цистерн, рефрижераторов, радиопрозрачных обтекателей, лопастей вертолётов, выхлопных труб, деталей машин и приборов, коррозионностойкого оборудования и трубопроводов, небольших зданий, бассейнов для плавания и др., а также как электроизоляционный материал в электро- и радиотехнике.

    Свойства стеклопластиков.
    Стеклопластик обладает многими очень ценными свойствами, дающими ему право называться одним из материалов будущего. Ниже перечислены некоторые из них.

    Малый вес.
    Удельный вес стеклопластиков колеблется от 0,4 до 1,8 и в среднем составляет 1,1 г/см3. Напомним, что удельный вес металлов значительно выше, например, стали – 7,8, а меди — 8,9 г/см3. Даже удельный вес одного из наиболее легкого сплава, применяемого в технике, — дуралюмина составляет 2,8 г/см3. Таким образом, удельный вес стеклопластика в среднем в пять-шесть раз меньше, чем у черных и цветных металлов, и в два раза меньше, чем у дуралюмина. Это делает стеклопластик особенно удобным для применения на транспорте. Экономия в весе на транспорте переходит в экономию энергии; кроме того, за счет уменьшения веса транспортных конструкций (самолетов, автомобилей, судов и т.п.) можно повысить их полезную нагрузку и за счет экономии топлива увеличить радиус действия.

    Диэлектрические свойства.
    Стеклопластики являются прекрасными электроизоляционными материалам при использовании как переменного, так и постоянного тока.

    Высокая коррозионная стойкость.
    Стеклопластики как диэлектрики совершенно не подвергаются электрохимической коррозии.
    Существует целый ряд смол (некоторые полиэфирные смолы, смолы Norpol DION), позволяющие получить стеклопластики стойкие к различным агрессивным средам, в том числе и к воздействию концентрированных кислот и щелочей.

    Хороший внешний вид.
    Стеклопластики при изготовлении хорошо окрашиваются в любой цвет и при использовании стойких красителей могут сохранять его неограниченно долго. Прозрачность. На основе некоторых марок светопрозрачных смол можно изготовить стеклопластики, по оптическим свойствам немногим уступающим стеклу.

    Высокие механические свойства.
    При своем небольшом удельном весе стеклопластик обладает высокими физико-механическими характеристиками. Используя некоторые смолы и определенные виды армирующих материалов, можно получить стеклопластик, по своим прочностным свойствам превосходящий некоторые сплавы цветных металлов и стали.

    Теплоизоляционные свойства.
    Стеклопластик относится к материалам с низкой теплопроводностью. Кроме того, можно значительно повысить теплоизоляционные свойства путем изготовления стеклопластиковой конструкции типа “сэндвич”, используя между слоями стеклопластика пористые материалы, например пенопласт. Благодаря своей низкой теплопроводности, стеклопластиковые сэндвичевые конструкции с успехом применяются в качестве теплоизоляционных материалов в промышленном строительстве, в судостроении, в вагоностроении и т.д.

    Простота в изготовлении.
    Существует много способов изготовления стеклопластиковых изделий, большинство из которых требует минимальных вложений в оборудование. Например, для ручного формования потребуются только матрица и небольшой набор ручных инструментов (прикаточные валики, кисти, мерные сосуды и т.д.). Матрица может быть изготовлена практически из любого материала, начиная с дерева и заканчивая металлом. В настоящие время широкое распространение получили стеклопластиковые матрицы, которые имеют сравнительно небольшую стоимость и длительный срок службы.

    Стеклопластик получают путем горячего прессования стекловолокна(Здесь имеется ввиду метод производства СТЕКЛОМАТЕРИЛА. Rules26), перемешанного с синтетическими смолами. В стеклопластиках стекловолокно играет роль армирующего материала, придающего изделиям высокую механическую прочность при малой плотности.

    В настоящее время существует целый ряд различных смол, используемых в производстве стеклопластиковых изделий. Наибольшее распространение получили полиэфирные, винилэфирные и эпоксидные смолы. В зависимости от метода формования, химсостава и области применения все смолы можно разделить на следующие группы:
    а) по методу формования:
    для ручного формования
    для вакуумной инжекции
    для горячего прессования
    для процессов намотки
    для пултрузии

    б) по области применения:
    обычные конструкционные
    химстойкие
    огнестойкие
    теплостойкие
    светопрозрачные

    Основные методы изготовления стеклопластиковых изделий.

    1. Ручное (контактное) формование.

    При этом методе стеклоармирующий материал вручную пропитывается смолой при помощи кисти или валиков. Затем пропитанный стекломат укладывается в форму, где он прикатывается прикаточными валиками. Прикатка осуществляется с целью удаления из ламината воздушных включений и равномерного распределения смолы по всему объему. Отверждение ламината происходит при обычной комнатной температуре, после чего изделие извлекается из формы и подвергается мехобработке (обрезка облоя, высверливание отверстий и т.д.)
    Применяемые материалы:
    Смолы: Любые, например эпоксидные, полиэфирные, винилэфирные.
    Волокна: Любые.
    Наполнители: Любые, стойкие к используемым смолам.
    Основные преимущества:
    Широко используется в течении многих лет.
    Простота процесса.
    Недорогие используемые инструменты, если используются смолы, отверждаемые при комнатной температуре.
    Широкий выбор поставщиков и материалов.
    Более высокое содержание стеклянного наполнителя и более длинные волокна по сравнению с методом напыления рубленного роввинга.
    Основные недостатки:
    Качество смеси смолы и катализатора, качество ламината, содержание стеклообразующего в ламинате очень зависят от квалификации рабочих.
    Высокая вероятность воздушных включений в ламинате.
    Малая производительность метода.
    Вредные условия труда.

    2. Метод напыления рубленного ровинга.

    Стеклонить подается в ножи пистолета, где она рубится на короткие волокна. Затем они в воздухе смешиваются с струей смолы и катализатора и наносятся на форму. После нанесения рубленного роввинга, его необходимо прикатать с целью удаления из ламината воздушных включений. Прикатанный материал оставляют отвердевать при обычных атмосферных условиях.
    Применяемые материалы:
    Смолы: Прежде всего полиэфирные.
    Волокна: Только стеклонить в виде роввинга (ровницы).
    Наполнители: Любые, стойкие к стиролу. Укладываются вручную.
    Основные преимущества:
    Широко используется много лет.
    Быстрый путь нанесения волокна и смолы.
    Дешевые формы.
    Основные недостатки:
    Ламинаты имеют тенденцию быть очень богатыми смолой и поэтому чрезмерно тяжелыми.
    Присутствуют только короткие волокна, которые ограничивают механические свойства ламината.
    Смолы должны быть с низкой вязкостью для возможности их напыления. Это приводит к уменьшению их механических свойств и теплостойкости.
    Вредные условия труда, большое содержаний в воздухе мелких частиц стекла.
    Качество конечного продукта в основном зависит от мастерства оператора установки.

    Стеклоармирующий материал укладывается на матрицу в виде заранее заготовленных выкроек. Затем укладывается пуансон, который прижимается к матрице при помощи прижимов. Смола подается в полость формы под рассчитанным давлением. Иногда, для облегчения прохода смолы через материал используется вакуум, который создается внутри формы. Как только смола пропитала весь стекломатериал, инжекцию останавливают и ламинат оставляют в форме до полного отверждения. Отверждение может проходить при обычной или повышенной температурах.
    Применяемые материалы:
    Смолы: эпоксидные, полиэфирные, винилэфирные.
    Волокна: Любые. Желательно использовать специально предназначенные для этого стекломатериалы с проводящим слоем и механически связанными волокнами.
    Наполнители: Любые стойкие к стиролу, кроме материалов в виде сот.
    Основные преимущества:
    Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.
    Хорошие условия труда и окружающей среды. Нет большого выброса вредных веществ.
    Возможно сокращение трудовых затрат и времени на изготовление изделия. Один рабочий может обслуживать одновременно несколько аппаратов, производяших инжекцию.
    Вся форма изделия имеет глянцевую поверхность.
    Минимизированы отходы материалов.
    Основные недостатки:
    Дорогие и сложные формы.
    Сложность процесса.
    Необходимость иметь инжекционное оборудование.

    4. Метод пултрузии.

    Волокна подаются от катушечной рамы до ванны со смолой и затем проходят через нагретую фильеру. В фильере убираются излишки смолы, происходит профилирование ламината и отверждение материала. После этого отвержденный профиль автоматически обрезается на необходимые длины.
    Применяемые материалы.
    Смолы: Эпоксидная смола, полиэфирная смола, винилэфирная смола.
    Волокна: Любые.
    Наполнители: Не используются.
    Основные преимущества:
    Это может быть очень быстрый процесс пропитки и отверждения материала.
    Автоматизированное управление содержанием смолы в ламинате.
    Недорогие материалы.
    Хорошие структурные свойства ламинатов, так как профили имеют направленные волокна и высокое содержание стекломатериала.
    Закрытый процесс пропитки волокна.
    Основные недостатки:
    Ограниченная номенклатура изделий.
    Дорогое оборудование.

    5. Метод намотки.

    Этот процесс прежде всего используется для изготовления пустотелых круглых или овальных секционных компонентов, типа труб или резервуаров. Волокна пропускаются через ванну со смолой, затем через натяжные валики, служащие для натяжения волокна и удаления излишков смолы. Волокна наматываются на сердечник с необходимым сечением, угол намотки контролируется отношением скорости движения тележки к скорости вращения.
    Применяемые материалы:
    Смолы: Любые.
    Волокна: Любые, волокна подаются напрямую от рамы для катушек без дополнительного сшивания в ткань.
    Наполнители: Любые.
    Основные преимущества:
    Это может быть очень быстрый и поэтому экономически выгодный метод укладки материала.
    Регулируемое соотношение смола/стекло.
    Высокая прочность при малом собственном весе.
    Неподверженность коррозии и гниению
    Недорогие материалы
    Хорошие структурные свойства ламинатов, так как профили имеют направленные волокна и высокое содержание стекломатериала.
    Основные недостатки:
    Ограниченная номенклатура изделий.
    Дорогое оборудование.
    Волокно трудно точно положить по длине сердечника.
    Высокие затраты на сердечник для больших изделий.
    Рельефная лицевая поверхность.

    6. Метод RFI (Resin Film Infusion).

    Сухие ткани выкладываются вместе со слоями полутвердой пленки из смолы. Весь полученный пакет закрывается специальной пленкой. Сначала между пленкой и формой создается вакуум, после чего форму помещают в термошкаф или автоклав. Под воздействием температуры смола переходит в текучее состояние и благодаря вакууму пропитывает материал. После некоторого времени смола полимеризуется.
    Применяемые материалы:
    Смолы: Только эпоксидная смола.
    Волокна: Любые.
    Наполнители: Почти все, хотя ПВХ пена нуждается в специальной обработке из-за высоких температур процесса.
    Основные преимущества:
    Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.
    Высокие физико-механические характеристики из-за твердого начального состояния полимера и высоких температур отверждения.
    Более низкая стоимость процесса по сравнению с методом препрегов.
    Хорошие условия труда и окружающей среды. Нет большого выброса вредных веществ.
    Основные недостатки:
    Мало применяется вне аэрокосмической промышленности.
    Для процесса необходима система вакуумного мешка, термошкаф или автоклав.
    Требования к оборудованию и инструменту по температуростойкости.

    7. Метод препрегов.

    Препрег — предварительно пропитанная смолами стеклоткань.
    Ткани и волокна предварительно пропитаны пред-катализированной смолой под высокой температурой и давлением. В таком виде препреги могут хранится до нескольких недель, однако для увеличения срока хранения, их хранят при пониженных температурах. Смола в препрегах находится в полутвердом состоянии. При формовании препреги укладываются на поверхность формы и закрываются вакуумным мешком. Затем происходит их нагревание до температуры примерно 120 — 180 град.C при этой температуре смола переходит в текучие состояние и препрег принимает размеры формы. Далее при дальнейшем повышении температуры происходит отверждение смолы. Дополнительное давление (до 5 атмосфер) для формования обычно обеспечивается автоклавом.
    Применяемые материалы:
    Смолы: Эпоксидные, полиэфирные, фенольные и высокотемпературные смолы типа полиимидных др.
    Волокна: Любые.
    Наполнители: Любые стойкие к температурам процесса.
    Основные преимущества:
    Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.
    Хорошие условия труда и окружающая среда. Нет большого выброса вредных веществ.
    Возможность автоматизировать процесс и снизить трудовые затраты.
    Основные недостатки:
    Высокая стоимость материалов
    Для отверждения необходимы автоклавы, которые ограничивают размеры выпускаемых изделий.

    Надеюсь выше преведеная классификация была Вам полезна и поможет разобраться в основах стеклоластикового производства.

    Ссылка на основную публикацию