Определение гранулометрического состава инертных материалов

Гранулометрический состав материалов

Определения и формулы для расчета

Гранулометрический состав материала характеризуется количественным распределением зерен по крупности. За крупность зерна (его диаметр) условно принимается максимальный размер квадратного отверстия сетки, через которое зерно проваливается. Масса зерен характеризуется содержанием зерен крупнее или меньше размера отверстий сетки. Те зерна, которые проваливаются через сетку с размером отверстий d в миллиметрах, составляют нижний класс и обозначаются –d, а зерна, которые остаются на сетке, составляют верхний класс и обозначаются +d.

Если рассев производится одновременно на нескольких сетках с различными размерами отверстий и материал последовательно проходит через сетки с уменьшающимися размерами отверстий, то на каждой сетке получаются узкие классы крупности, характеризующиеся размером верхней сетки, через которую зерно прошло d1, и размером данной сетки, на которой оно осталось d2. Крупность такого класса обозначается – d1+ d2.

Для определения гранулометрического состава проводится ситовой анализ (рассев пробы на узкие классы на стандартном наборе сит).

Пример 1. Приведем пример обработки результатов ситового анализа. Ситовой анализ выполнялся на наборе сит с размерами отверстия от 0,3 до 0,074 мм. Результаты взвешивания узких классов представлены в таблице 1.

Таблица 1 – Результаты взвешивания узких классов

Крупность класса, ммМасса класса, г
+0,3
-0,3+0,15
-0,15+0,104
-0,104+0,074
-0,074+0,0

По данным взвешивания составим таблицу 2.

Таблица 2 – Результаты ситового анализа

Крупность класса, ммМасса класса, гСодержание класса b * , %Суммарное содержание класса, Sb, %
-dmax+0,37,27,2100,0
-0,3+0,1517,825,092,8
-0,15+0,10428,653,675,0
-0,104+0,07425,078,848,4
-0,074+0,021,4100,021,4
Всего100,0

Примечание: * – содержание класса совпадает с выходом класса. Так как масса класса и масса расчетного компонента (классы определенной крупности) – здесь одна и та же величина.

Содержание класса определяется как отношение массы данного класса к сумме масс всех классов:

b+0,3 = 10 : 140 · 100 = 7,15%;

b-0,3+0,15 = 25 : 140 · 100 = 17,85% и т.д.

Суммарными называются классы крупности, полученные при рассеве материала только на одном сите. Верхний класс называется суммарным по плюсу, а нижний – суммарным по минусу.

Для одного и того же сита сумма суммарных содержаний по плюсу и минусу равна 100%. В графе 4 и 5 таблицы 2.2 записывают суммарные содержания классов для каждого из сит. В каждой строчке суммарное содержание по плюсу записывают для размера сита, стоящего в этой строчке в графе 1 и имеющего знак плюс, а суммарное содержание по минусу – для размера сита, стоящего в графе 1 на строчку ниже и имеющего знак минус. Суммарные содержания по плюсу подсчитываются последовательным суммированием содержаний узких классов сверху вниз, а по минусу – суммированием снизу вверх. Например:

По данным ситового анализа строятся суммарные характеристики крупности по плюсу или по минусу.

Суммарные характеристики представляют собой графическую зависимость между размером отверстий сит в миллиметрах и суммарным содержанием класса на этом сите по плюсу или по минусу в процентах. Суммарная характеристика по минусу является зеркальным отображением суммарной характеристики по плюсу (рисунок 1).

Пользуясь суммарной характеристикой крупности, можно определять содержания любых классов крупности – как суммарных, так и узких. Суммарное содержание класса для какого-либо размера сита определяется как ордината, проведенная из точки на оси абсцисс, соответствующей размеру сита, до графика характеристики крупности, для определения содержании узкого класса необходимо определить суммарные содержания для крайних размеров класса и произвести их вычитание.

Рисунок 1 – Суммарная характеристика крупности

Пример 2. По рис.1 необходимо определить содержание класса -0,2+0,1 мм.

Решение. Определяем по плюсу содержание класса крупнее 0,1 и 0,2 мм. Получаем соответственно: b+0,1=54% и b+0,2=15%.

Пользуясь характеристикой по минусу, получим:

Крупность массы зерен характеризуют максимальным или средним диаметром dср. За dmax принимается максимальный размер сита, через которое все зерна проходят. Его находят по характеристике крупности как размер отверстий сита, при котором суммарные содержания по плюсу и по минусу соответственно равны нулю и 100%. Для нашего примера dmax=0,36 мм.

Средний диаметр рассчитывается по таблице результатов ситового анализа по различным формулам, выражение которых зависит от параметра усреднения. В нашем примере:

dср = ,

где bi содержание узкого класса крупности, %; n – число классов; di среднеарифметический диаметр узкого класса крупности, мм, di=(d1+d2)/2; d1 и d2 – крайние размеры узкого класса крупности.

Для нашего примера:

dср = (0,330 · 7,2 + 0,225 · 17,8 + 0,127 · 28,6 + 0,089 · 25 + 0,37 · 21,4) : (7,15 + 17,85 + 28,6 + 25 21,4) = 0,2 мм.

Задачи на построение суммарных характеристик крупности и определение по ним содержания класса и средневзвешенного диаметра Задача 1. По результатам ситового анализа построить суммарную характеристику крупности по плюсу или по минусу. Определить по ней содержание указанных классов и средневзвешенный диаметр (см. таблицу 2). Таблица 2 – Условия задачи 1
Номер вариантаИсходные данныеПостроение суммарной характеристики крупностиТребуемая крупность класса, ммОтветы
Крупность класса, мм / Содержание класса, %Содержание класса, %Средневзвешенный диаметр, мм
-50+30 / 10-30+15 / 12-15+8 / 8-8+4 / 18-4+0 / 52По плюсу-12+1
-10+5 /39-5+2 / 32-2+1 / 13-1+0,5 / 7-0.5+0 / 9По минусу-6+3
-20+10 / 7-10+5 / 8-5+3 / 9-3+1 / 16-1+0 / 60По плюсу-8
-1+0,5 / 31-0,5+0,25 /24-0,25+0,15/15-0,15+0 / 30По плюсу-0,3
-25+12 /27-12+6 / 17-6+3 / 13-3+1,5 / 131,5 / 30По плюсу-10+1

Задача 2. По результатам ситового анализа построить суммарную характеристику крупности по плюсу или по минусу. Определить по ней содержание указанных классов (см. таблицу 3).

Таблица 3 – Условия задачи 2
Номер вариантаИсходные данныеПостроение суммарной характеристики крупностиТребуемая крупность класса, ммОтветы
Крупность класса, мм / Cодержание класса, %Содержание класса, %
-2+1 / 13-1+0,5 / 22-0,5+0,25 / 25-0,25+0,5 /12-0,15+0 / 28По минусу-0,6+0,3
-10+5 / 20-5+3 / 10-3+1 / 22-1+0,5 / 15-0,5+0 / 33По плюсу-4+2
-300+200 / 20-200+100 / 27-100+50 / 23-50+25 / 14-25+0 / 16По минусу-125+75
-50+25 / 40-25+12,5 / 23-12,5+5 / 18-5+2,5 / 8-2,5+0 / 11По минусу-5+1
-50+25 / 25-25+12,5 / 27-12,5+5 / 28-5+2,5 / 15-2,5+0 / 25По плюсу-10

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: “Что-то тут концом пахнет”. 8813 – | 8347 – или читать все.

Гранулометрический состав

ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ (а. granulometric соmposition; н. Kornverteilung; ф. соmposition granulometrique, granulometrie; и. соmposicion granulometrica, granulometria) — распределение зёрен (кусков) по крупности в массивах горной породы, горной массы, почве или искусственном продукте, характеризуемое выходом в процентах от массы или количества зёрен.

Гранулометрический состав — важный показатель физических свойств и структуры материала. Общепринятой классификации по данным гранулометрического состава не существует, что связано с различием целей и объектов, для которых производится определение гранулометрического состава. В геологии (литологии), горном деле, обогащении полезных ископаемых, грунтоведении, почвоведении, технологии строительных материалов и других областях техники применяют различные классификации и шкалы классов (фракций) крупности. Классы (фракции) обычно обозначают в мм, в обогащении полезных ископаемых классы крупнее и мельче данного размера — знаками плюс и минус соответственно. В геологии при оценке осадочных горных пород различают: валуны крупные (свыше 500 мм), валуны средние (500-250 мм), валуны мелкие (250-100 мм), гальку (100-10 мм), гравий крупный (10-5 мм), гравий мелкий (5-2 мм), песок грубый (2-1 мм), песок средний (0,5-0,25 мм), песок мелкий (0,25-0,1 мм), алеврит (0,1-0,05 мм), пыль (0,05-0,005 мм), глину (до 0,005 мм). В горном деле гранулометрический состав горной массы, отделённой от массива, используют для оценки результатов буровзрывных работ, качества продуктов обогащения и учитывают при выборе типа и параметров технологического оборудования в карьерах, на шахтах, дробильно-сортировочных, обогатительных, окомковательных фабриках.

Реклама

Гранулометрический состав руд, углей, неметаллорудных материалов устанавливается стандартами и техническими условиями, разрабатываемыми для определённых потребителей минерального сырья. В зависимости от цели исследования и размеров частиц гранулометрический состав определяют прямыми и косвенными методами гранулометрии.

Гранулометрический состав может быть выражен в виде дискретной или непрерывной зависимости содержания частиц от их размеров. Для определения дискретной зависимости интервал размеров всех частиц анализируемого вещества подразделяют на классы (фракции) и гранулометрический состав представляют в виде процентного содержания частиц каждой из фракций (фракционный состав). В зависимости от размера максимального куска классификация по крупности осуществляется грохочением пробы на наборе сит (ситовой анализ) либо гидравлической классификацией материала. Величина фракции показывает содержание в веществе частиц в интервале размеров, ограничивающих фракцию. Графическое изображение гранулометрического состава в виде непрерывной зависимости называется кривой распределения. При построении её по оси абсцисс откладывают размеры частиц, а по оси ординат — суммарное содержание всех частиц от начала отсчёта до данной точки, получая интегральную (суммарную) кривую распределения. Если по оси ординат откладывают относительное содержание фракций, причём разность между средними размерами частиц каждой фракции стремится к нулю, получают дифференциальную кривую распределения (рис. 1). При определении гранулометрического состава строительных материалов результаты анализа иногда выражают в виде треугольника (чем ближе точка к вершине треугольника, тем больше в данном материале фракции, соответствующей этой вершине).

По результатам анализов гранулометрического состава составляют таблицы, в которых отражают: класс (в мм); выход отдельных классов (по массе в килограммах и в %); суммарный (кумулятивный) выход по плюсу, т.е. выход суммарных остатков или по минусу, т.е. суммарный просев (в %). Данные анализа также выражают графически, используя простые, полулогарифмические и логарифмические сетки. На оси абсцисс откладывают размеры отверстий контрольных сит, на оси ординат — суммарные остатки. Крупность продукта характеризуют в необходимых случаях верхним (нижним) номинальным размером, т.е. размером отверстий контрольного сита, соответствующим установленному допустимому значению остатка просева. Крупность горной массы оценивают также средним (средневзвешенным) размером куска (медианой).

Гранулометрический состав продуктов взрывного и механического дробления горных пород отражает вероятностный процесс образования кусков (зёрен) различной крупности в результате их разрушения. Гранулометрический состав взорванной породы в любом случае можно выразить графиками (рис. 2), из которых видно, что с увеличением допустимого размера кусков количество крупной фракции породы, требующей вторичного дробления, во всех случаях (особенно при мелком негабарите) уменьшается.

Таким образом, при постоянстве гранулометрического состава взорванной массы степень дробления, оцениваемая по выходу негабарита, может быть различной, неодинакова и производственная оценка одного и того же взрыва на предприятиях с различным размером допустимого куска. Поэтому одни и те же породы при одинаковом гранулометрическом составе могут считаться легковзрываемыми или трудновзрываемыми в зависимости от принятых допустимых размеров кусков.

Читайте также:  Как сделать разборный мангал своими руками из металла

Определение гранулометрического состава грунта

Гранулометрический состав грунта – это определенное содержание по весу разнофракционных частиц, выражающееся в их процентном отношении к массе сухих проб, взятых для анализа.

Отборы конкретных образцов осуществляют согласно требований ГОСТа 12071-2000, где микроагрегатный состав определяется по весовому содержанию твердых водостойких составляющих частиц.

Методы анализа гранулометрического состава изложены в межгосударственном стандарте — ГОСТе 12536-79.

Цели исследования

Актуальность определения гранулометрического состава грунта обуславливается широким спектром работ, для выполнения которых необходимы сведения о водорастворяемых частицах.

Такой анализ проводится для решения следующих вопросов:

  • определения классификации грунтов на определенной территории;
  • оценки пригодности грунтового состава для применения в качестве насыпных сооружений для земляных плотин, дамб и дорог;
  • расчета обратных фильтров;
  • вычисления степени водопроницаемости несвязанных и рыхлых смесей;
  • выбора наиболее подходящих отверстий для установки фильтров скважин бурового типа;
  • оценки грунтов для возможности их использования как наполнителя при изготовлении цементно-бетонных смесей и стройматериалов;
  • вычисления потенциально возможного проседания почвы в фильтрующих плотинах, выемках и котлованах.

Гранулометрический анализ позволяет вычислить важнейшие характеристики грунта: степень усадки, пористость, сопротивление сдвигу, пластичность, сжимаемость и капиллярность.

Виды обломочных несцементированных грунтов

Исходя из неоднородного состава, существует определенная классификация, позволяющая соотносить исследуемые образцы к одной из категорий.

Выделяют такие виды обломочных несцементированных грунтов:

В основе данной классификации лежит принцип фракционного размера обломков, от чего напрямую зависят свойства, в том числе степени водопоглощения и водорастворения.

Крупнообломочные

Это несвязные крупнодисперсные фракции, сформированные в результате воздействия водных потоков и ледников на скальные породы.

В их составе свыше 50% частиц, диаметр которых превышает 2 мм.

Подразделяются на два вида: с высоким содержанием песчаных (свыше 40%) и глинистых (свыше 30%) частиц.

Они могут быть достаточно однородными, однако все они характеризуются степенью водонасыщения, текучестью и уровнем влажности.

Такие грунты образуются в результате сильного выветривания горных пород.

Щебенистые

Разновидность галечниковых грунтов плотностью от 1,2 до 3 г/см3, представляющие собой раздробленную в результате естественных причин скальную породу.

Частицы в виде щебеночных обломков, имеют размеры от 10 до 200 мм, причем разной формы (игловатая, пластинчатая). Данные грунты в сухом состоянии обладают крайне низкой способностью связываться между собой.

Грунт характеризуется низкой способностью к сжатию, давая эффективную основу для фундамента строений.

Дресвяные/гравийные

Дресвяные и гравийные грунты – это обломочная категория грунтовых составов, имеющая частицы окатанного типа, размером от 3 до 70 мм. Чаще всего такие грунты располагаются в поймах рек, рядом с озерами, прудами и морями.

В сухом состоянии они обладают очень маленьким процентом связности.

Различный минералогический состав частиц, составляющих такие грунты, придает ему определенную скелетность, неплохую прочность и устойчивость.

Песчаные

Песчаные грунты – это смесевые частицы разрушенных твердых (горных) пород, включающих в себя зерна кварца и ряда других минералов.

В зависимости от особенностей входящих в состав такого грунта элементов он может иметь высокую, среднюю или низкую плотность. По характеристикам он относится к несвязному минеральному типу, размеры частиц которого составляют от 0,05 до 2 мм в объеме, не больше 50%.

Крупный и гравелистый песок

Песок гравелистого типа состоит из песчинок, размерами от 0,28 мм до 5-6 мм и обладает хорошей несущей способностью за счет плотности 5,5-6,5 кг/см2.

Достаточно схожими свойствами обладает крупный песок, где размеры песчинок составляют от 0,30 до 2 мм.

В состав обоих типов песка входят такие минералы, как полевой шпат (8%), кварц (70%), кальцит (3%) и прочие (11%).

Примечательно, что свойство грунта в плане хорошей несущей способности не зависит от объема влаги, присутствующей в составе гравелистого и крупного песка.

Средний и мелкий песок

Мелкий песок состоит из песчинок, размерами от 1,5 до 2,0, а средний – от 2,0 до 3,0 мм. Такие песчаные составы имеют в среднем плотность порядка 3-5 кг/см2, которая дает им высокую несущую способность.

В отличие от крупного и среднего, мелкий песок при насыщении влагой теряет свои прочностные свойства, которые уменьшаются в 2 раза.

Пылеватые частицы

По своему минеральному составу пылеватые частицы – это практически чистый кварц, реже — полевые шпаты с примесью других минералов. Размеры таких составов от 0,050 до 0,001 мм.

В сухом состоянии они обладают крайне слабой связанностью, имеют низкий уровень пластичности. Хороший капиллярный состав позволяет поднимать воду на высоту до 2,5-3 м.

Водопроницаемость таких грунтов крайне низкая. Пылеватые частицы при соприкосновении с влагой способны принимать состояние плывунов.

Суглинок и глинистые частицы

Суглинок – рыхлая порода осадочного типа, содержащая в среднем от 10 до 30% глинистых веществ, размером менее 0,005 мм. В таком грунте может присутствовать супесь – песчаные частицы с содержанием глинистых примесей в объеме до 10%, которые по своим характеристикам очень схожи с песчаными грунтами.

В песчаных суглинках содержится в основном кварц с воднорастворимыми солями, а в глинистых – минералы монтмориллонит, иллит и каолинит.

Методы определения состава грунтовой смеси

Для определения состава используется принцип расчленения грунтовой смеси на определенные группы, схожие по своему составу и специально отобранные для пробы. Размеры частиц определяется в миллиметрах, а вес – в граммах.

Существуют различные методики определения такого состава, главными из которых являются ситовой, ареометрический, пипеточный и отмучивание.

Ситовой

В его основе – использование набора сит с отверстиями, размерами 0,25; 0,1; 1; 0,5; 5; 2; 10 мм, а также специальной машины для просеивания с поддоном.

Благодаря такому просеиванию удается определить и визуально увидеть состав грунта, а также процентное соотношение имеющихся в нем минералов и компонентов.

Для получения объективного анализа следует внимательно отнестись к вычислению массы средней пробы грунта, которая должна иметь следующие значения:

  • При частицах, размерами до 2 мм — 100 г.
  • При частицах, размерами выше 2 мм (до 10% от общего веса) – 500 г.
  • При частицах, размерами выше 2 мм (10-30% от общего веса) – 1000 г.
  • При частицах, размерами выше 2 мм (свыше 30% от общего веса) – 2000 г.

Для будущего анализа среднюю пробу определяют методом квартования (разделения взятых проб).

Ареометрический

Основан на учете изменения плотности суспензии, которая замеряется по мере отстаивания с помощью специального прибора – ареометра.

Предварительно отбирается проба, где используется метод квартования, при котором смесь проходит дополнительно через сито, с диаметром отверстий до 1 мм.

Масса средней пробы составляет:

  • Для супесей – 40 г.
  • Для глин – 20 г.
  • Для суглинков – 30 г.

После определения процентного содержания смесей грунта при помощи ареометра, вычисляют содержание каждой отдельной фракции. Здесь используют метод последовательного вычитания меньшей величины из большей. Пробу отбирают с учетом природной влажности.

Метод отмучивания

Суть методики заключается в определении содержания пылеобразных и глинистых частиц по изменению масса песка после предварительного отмучивания частиц. Для выполнения испытания используется сушильный шкаф, цилиндрическое ведро или сосуд и секундомер.

В ходе проведения испытания просеянный и высушенный до постоянной массы песок (1000 г) помещают в ведро и заливают водой, после чего выдерживают так 2 часа.

Цилиндрическое ведро

Параллельно из воды удаляются все посторонние частицы и глинистые примеси. Промывку производят несколько раз. После того, как вода в ходе промывки станет чистой, можно приступать к сливу суспензии через нижнее отверстие в сосуде.

Далее остается только вычислить содержание в песке отмучиваемых глинистых частиц по формуле:

  • m – вес высушенной навески до процесса отмучивания
  • m1 — вес высушенной навески после процесса отмучивания

Пипеточный

При таком способе содержание глинистых и пылеобразных частиц определяется путем выпаривания суспензии (получаемой при промывке песка и взвешивании сухого остатка), отобранной с помощью пипетки.

Метод заключается в перемешивании песка, залитого водой в специальном сосуде, а также ополаскиванием путем переливания суспензии во второе ведро.

Металлический цилиндр с пипеткой мерного типа

Спустя 1,5-2 минуты, когда осадок ляжет на дно. С помощью мерной пипетки берут пробу и выливают все содержимое на предварительно взвешенный стакан. Полученную суспензию выпаривают в специальном сушильном шкафу.

Результат обрабатывается по формуле:

  • m — масса навески песка, г;
  • m 1- вес чашки для выпаривания жидкости, г;
  • m 2- вес чашки с уже выпаренным порошком, г.

Расчет степени неоднородности гранулометрического состава песчаного грунта

С целью определения пригодности песчаного грунта для выполнения тех или иных работ часто требуется просчет степени неоднородности его гранулометрического состава.

Для этого существует специальная формула:

  • d60 – диаметр частиц, которых в данной смеси содержится меньше 60% по массе;
  • d10 – диаметр частиц, которых в данной смеси содержится меньше 10% по массе

Если получившееся в результате расчета значение Сu≥3, то к наименованию песчаного грунта добавляют такое слово, как «неоднородный». Если же Сu Полезное видео

Смотрите интересный видеоматериал, в котором наглядно показан один из методов определения гранулометрического состава грунта.

Заключение

Чтобы получить объективные данные относительно гранулометрического состава исследуемого грунта используют разные методы расчета. Это позволяет исключить вероятность ошибок при получении результатов, добившись максимальной точности в плане выявления процентного соотношения сухого остатка, плотности и размера внутренних фракций.

Определение гранулометрического состава инертных материалов

Дороги автомобильные общего пользования

ЩЕБЕНЬ И ПЕСОК ШЛАКОВЫЕ

Определение гранулометрического состава

Automobile roads of general use. Rubble and sand slag. Determination of particle size distribution

Дата введения – 2015-07-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 “Межгосударственная система стандартизации. Основные положения” и ГОСТ 1.2 “Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены”

Сведения о стандарте

1 РАЗРАБОТАН Обществом с ограниченной ответственностью “Центр метрологии, испытаний и стандартизации”, Межгосударственным техническим комитетом по стандартизации МТК 418 “Дорожное хозяйство”

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 июня 2014 г. N 45)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

Читайте также:  Как правильно выбрать стиральную машину для семьи

4 Приказом Федерального агентства по техническому регулированию и метрологии от 2 февраля 2015 г. N 55-ст межгосударственный стандарт ГОСТ 32860-2014 веден в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Август 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге “Межгосударственные стандарты”

Введение

Настоящий стандарт входит в группу межгосударственных стандартов, устанавливающих требования и методы испытаний для шлаковых щебня и песка.

Настоящий стандарт разработан в рамках реализации программы по разработке межгосударственных стандартов, в результате применения которых на добровольной основе обеспечивается соблюдение требований Технического регламента (ТР ТС 014/2011 “Безопасность автомобильных дорог”), утвержденной решением Коллегии Евразийской экономической комиссии от 13 июня 2012 г. N 81.

1 Область применения

Настоящий стандарт распространяется на щебень и песок из шлаков черной и цветной металлургии, а также фосфорные шлаки, применяемые при строительстве, ремонте, капитальном ремонте, реконструкции и содержании автомобильных дорог общего пользования.

Настоящий стандарт устанавливает метод определения гранулометрического состава шлаковых щебня и песка.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.004 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.007 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.044 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.4.131 Халаты женские. Технические условия

ГОСТ 12.4.132 Халаты мужские. Технические условия

ГОСТ 24104 Весы лабораторные. Общие технические требования
________________
В Российской Федерации действует ГОСТ Р 53228-2008.

ГОСТ 28846 (ИСО 4418-78) Перчатки и рукавицы. Общие технические условия

ГОСТ 32826 Дороги автомобильные общего пользования. Щебень и песок шлаковые. Технические требования

ГОСТ 32859 Дороги автомобильные общего пользования. Щебень и песок шлаковый. Определение содержания пылевидных и глинистых частиц

ГОСТ 32862 Дороги автомобильные общего пользования. Щебень и песок шлаковые. Отбор проб

Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 32826, а также следующие термины с соответствующими определениями:

3.1 гранулометрический состав: Содержание в материале зерен различной крупности, выраженное в процентах от массы всего материала.

3.2 просеивание: Ручная или механическая сортировка сыпучего материала по размерам зерен с помощью сит.

3.3 частный остаток: Остаток материала на каждом сите, получаемый после просеивания.

3.4 полный остаток: Сумма частных остатков на данном сите и всех ситах с большими размерами ячеек.

3.5 единичная проба: Проба шлакового щебня или песка, полученная методом сужения из лабораторной пробы и предназначенная для сокращения до требуемого количества мерных проб для проведения испытания.

3.6 мерная проба: Количество шлакового щебня или песка, используемое для получения одного результата в одном испытании.

3.7 постоянная масса: Масса пробы, высушиваемой в сушильном шкафу при температуре (110±5)°С, различающаяся не более чем на 0,1% по результатам двух последних последовательно проведенных взвешиваний через промежутки времени, составляющие не менее 1 ч.

4 Требования безопасности и охраны окружающей среды

4.1 При работе со шлаковыми щебнем и песком необходимо соблюдать требования техники безопасности, предусмотренные ГОСТ 12.1.007.

4.2 Шлаковые щебень и песок в соответствии с ГОСТ 12.1.044 относятся к негорючим веществам.

4.3 Персонал при работе со шлаковым щебнем и песком должен быть обеспечен средствами индивидуальной защиты:

– специальная одежда (халат) по ГОСТ 12.4.131 или ГОСТ 12.4.132;

– перчатки или рукавицы по ГОСТ 28846.

4.4 При работе с сушильным шкафом необходимо соблюдать правила пожарной безопасности, предусмотренные ГОСТ 12.1.004.

4.5 Утилизацию испытанного материала проводят в соответствии с рекомендациями завода-изготовителя и действующим законодательством.

5 Требования к условиям испытания

При проведении испытания шлакового щебня и песка должны соблюдаться следующие условия для помещений:

– температура воздуха – (21±4)°С;

– относительная влажность воздуха – не более 80%.

Перед началом испытания щебень и песок должны иметь температуру, соответствующую температуре воздуха в помещении.

6 Метод испытания

Сущность метода заключается в распределении и разделении зерен шлакового щебня и песка путем просеивания мерной пробы через набор сит и определении полных остатков на каждом сите.

7 Шлаковый щебень

7.1 Требования к средствам измерений и вспомогательным устройствам

При проведении испытания применяют следующие средства измерений и вспомогательные устройства:

– сита с квадратными ячейками, соответствующими номинальным размерам зерен определенной фракции: 2D; 1,4D; D; d; d/2, и среднее сито с размерами ячеек для широких фракций D/1,4 для смеси фракций D/2 в соответствии с [1]* и [2]*;

Примечание – Если выбранные сита не совпадают с серией R20, указанной в стандарте [3]*, то вместо них применяют сита на ступень выше или ниже.
________________
* Поз. [1]-[3] см. раздел Библиография. – Примечание изготовителя базы данных.

– поддоны и крышки для сит;

– шкаф сушильный, обеспечивающий циркуляцию воздуха и поддержание температуры (110±5)°С;

– сито для промывки щебня с размером ячеек 0,063 мм в соответствии с [1];

– весы по ГОСТ 24104;

– противни металлические.

7.2 Подготовка к проведению испытания

7.2.1 Отбор и формирование проб шлакового щебня проводят в соответствии с ГОСТ 32862.

7.2.2 Для проведения испытания из единичной пробы готовят мерную пробу шлакового щебня.

Масса мерной пробы должна соответствовать значениям, приведенным в таблице 1.

Гранулометрический (механический) состав грунтов и почв

Твердая фаза почвы состоит из частиц различных размеров, которые называются механическими элементами или гранулами. Относительное содержание в почве или грунте механических элементов называется механическим или гранулометрическим составом, а количественное определение их гранулометрическим или механическим анализом.

В соответствии с ГОСТ 27593-88 «Почвы. Термины и определения», гранулометрический состав – это содержание в почве механических элементов, объединенных по фракции.

Проведение гранулометрического анализа очень важно при определении физико-механических свойств почв/грунтов, таких как порозность, влагоемкость, водопроницаемость, плотность, пластичность, липкость, набухание и др., то есть тех свойств, которые напрямую влияют на плодородие почв или знание которых необходимо при проведении строительных работ.

Механические элементы в зависимости от размера подразделяют на фракции: больше 3мм-камни, 3-1мм — гравий, песок 1-0,05мм (крупный, средний, мелкий), пыль – 0,05-0,001 (крупная, средняя, мелкая), ил – 0,001-0,0001 (грубый, тонкий) и коллоиды меньше 0,0001. Сумму всех механических элементов почвы размером меньше 0,01мм называют физической глиной, а больше 0,01мм – физическим песком. Кроме того, выделяют мелкозем, в который входят частицы меньше 1мм, и почвенный скелет – частицы больше 1мм.

Соотношение физической глины и физического песка лежит в основе классификации почв по механическому составу. Все почвы и грунты по механическому составу объединяют в несколько групп с характерными для них физическими и химическими свойствами: песок, супесь, суглинок, глина. Каждая группа подразделяется на подгруппы в зависимости от крупности механических элементов и преобладающих фракций.

Методы гранулометрического анализа

Гранулометрический состав можно определить приближенно в полевых условиях по внешним признакам и на ощупь «сухим» или «мокрым» методом. Этими методами могут воспользоваться садоводы-огородники при определении доз внесения удобрений, количества песка, торфа, опилок для улучшения структуры почвы и создания более благоприятных условий для роста сельскохозяйственных культур.

«Сухой» метод

Сухой комочек или щепотку почвы/грунта кладут на ладонь и тщательно растирают пальцами. Механический состав определяется по ощущению при растирании. Глинистые почвы в сухом состоянии с большим трудом растираются между пальцами, но в растертом состоянии ощущается однородный тонкий порошок. Суглинистые почвы при растирании в сухом состоянии дают тонкий порошок, в котором прощупывается некоторое количество песчаных частиц. Песчаные почвы состоят только из песчаных зерен с небольшой примесью пылеватых и глинистых частиц.
Пылеватые почвы и породы при растирании дают ощущение мягкости или «бархатистости»; песчанистые — жесткости, шероховатости; пылевато-песчанистые — мягкости, но и явного присутствия песчинок.

«Мокрый» метод

Образец растертой почвы или грунта увлажняют до тестообразного состояния, при котором почвы обладают наибольшей пластичностью. Затем пробуют на ладони скатать шарик и из него шнур толщиной около 3мм. Получившийся шнур пробуют свернуть в кольцо диаметром 2-3см. В зависимости от механического состава почвы/грунта показатели «мокрого» анализа будут различны. У рыхлых песков шарик не образуется; у связных песков — легко крошится; у супесей — имеет шероховатую поверхность; у суглинков — гладкую поверхность; у глинистых — гладкую, блестящую поверхность. Пески не образуют шнура; супеси дают зачатки шнура; у легких суглинков шнур образуется, но распадается на дольки; средние суглинки дают сплошной шнур, но при свертывании в кольцо он разламывается на дольки; тяжелый суглинок — шнур образуется сплошной, но при свертывании в кольцо трескается ; глины дают сплошной шнур, который свертывается в кольцо, не трескаясь.

Для точного установления гранулометрического состава применяют лабораторные методы, позволяющие находить количество всех групп механических элементов, слагающих почву или грунт.

При исследованиях гранулометрического состава почв/грунтов песчаного и крупнообломочного состава, реже в супесчаных, применяется ситовой метод (метод просеивания на ситах). Пробы грунта просеивают через набор сит с отверстиями разного диаметра: 10; 5; 2; 1; 0,5; 0,25; 0,1. Каждую фракцию грунта, задержавшуюся на ситах, взвешивают и рассчитывают процентное содержание по отношению к общей массе грунта. При проведении гранулометрического анализа песков с размером частиц от 10 до 0,5 мм просеивание проводится без промывки, а от 10 до 0,1 мм с промывкой водой

Читайте также:  Стеклянные полы - преимущества и недостатки

Для исследования гранулометрического состава глинистых и суглинистых грунтов для частиц менее 0,1мм применяют ареометрический и пипеточный методы гранулометрического анализа. Эти методы основаны на зависимости, существующей между скоростями падения частиц и их размером. Если взмутить суспензию почвы/грунта и оставить ее в спокойном состоянии, то постепенно взмученные частицы осядут. Быстрее будут осаждаться более крупные по размеру и более тяжелые механические элементы, то есть плотность и механический состав суспензии будут изменяться с течением времени.

При ареометрическом методе производят измерения плотности отстаиваемой в цилиндре суспензии ареометром через определенные промежутки времени. Плотность, измеренная ареометром, зависит от содержания в суспензии взвешенных твердых частиц. Получив значения убывающей плотности через определенные промежутки времени, с помощью расчетных формул или по номограммам определяют процентное содержание частиц определенного размера.

Пипеточный метод предполагает отбор проб суспензии из цилиндра с определенных глубин через разные промежутки времени. Для производства анализа взмучивают грунтовую суспензию и оставляют ее в покое на определенное время, после чего специальной пипеткой с нужной глубины отбирают пробу суспензии. Такая проба содержит только те частицы, которые не успели осесть за указанное время отстаивания. При следующих пробах, взятых пипеткой через большие промежутки времени от начала отстаивания суспензии, получают более мелкие частицы. Определяя массу высушенных проб и зная размер отобранных частиц (вычисляемый по длительности отстаивания суспензии и глубине взятия проб), вычисляют процентное содержание этих частиц в образце почвы/грунта.

Классификация почв по механическому составу (по Н.А. Качинскому)

Название
почвы по механическому составу
Содержание
физической глины (частиц 0,01 мм) в %
ПОЧВЫ
подзолистоготипа почвообразования (ненасыщ.
основан.)
степного типа
почвообразования красноземы и желтоземы
солонцы и сильно
солонцеватые почвы
подзолистоготипа почвообразования (ненасыщ.
основан.)
степного типа
почвообразования красноземы и желтоземы
солонцы и сильно
солонцеватые почвы
песок рыхлый0-50-50-5100-95100-95100-95
песок связный5-105-105-1095-9095-9095-90
супесь10-2010-2010-1590-8090-8090-85
суглинок легкий20-3020-3015-2080-7080-7085-80
суглинок средний30-4030-4520-3070-6070-5580-70
суглинок тяжелый40-5045-6030-4060-5055-4070-60
глина легкая50-6060-7540-5050-3540-2560-50
глина средняя65-8075-8550-6535-2025-1550-35
глина тяжелая>80>85>65 Подготовка проб почвы Проведение экстракции проб Отбор навесок почвы

Полезные статьи

Наука о почвах — этапы развития почвоведения

Бактериологическое исследование и анализ почвы

Определение гранулометрического состава руды и продуктов обогащения

Гранулометрический состав – это распределение зерен руды по классам крупности. Эти зерна имеют неправильную форму, поэтому их крупность характеризуется средним диаметром dср, который определяется для зерен крупностью более 5 мм линейными размерами куска в трех взаимно перпендикулярных направлениях как среднее из двух или трех измерений: т.е.

dcр = или dср = (57)

dср = или dср = (58)

Где l –длина, b – ширина и h – высота куска.

Для определения гранулометрического состава массы руды, состоящих из мелких частиц различных размеров и формы применяются следующие методы анализа : ситовой, седиментационный или дисперсный и микроскопический.

Ситовой анализ – это рассев материала на ситах или решетах с отверстиями различной величины. При этом диаметр зерна определяется размером отверстия сита, через которое оно проходит. Материал, оставшийся на сите обозначается знаком «плюс» (+), а прошедший через это сито знаком «минус» (-).

Ситовые анализы позволяют определять крупность частиц до 0,040 мм ( минимальный размер отверстий применяемых сит). Ситовые анализы выполняются сухим, мокрым или комбинированным способом. Два последних способа применяются для анализа глинистых и шламистых материалов. Ситовые анализы выполняются на стандартных наборах сит. Последовательный ряд размеров отверстий сит, применяемых при ситовом анализе, называется шкалой классификации, а отношение размеров отверстий двух соседних сит называется модулем шкалы. При определении гранулометрической характеристики руды после крупного и среднего дробления применяется набор сит с модулем 2. Например, набор сит с этим модулем будет состоять из сит с отверстиями 50, 25, 12, 6 и 3 мм. Для более мелких сит применяется стандартная система с модулем . В этой системе за основу принято сито 200 меш ( mesh) с отверстиями размером 0,074 мм. Меш – это число отверстий, приходящееся на один линейный дюйм ( 25,4 мм). Это модуль используется для сит с размером отверстий от 2,362 мм ( 8 меш) до 0,104 (150 меш). Пользуясь модулем можно определить размер отверстий предыдущего и последующего сита. Так, если при модуле = 1,414 имеется сито с отверстиями диаметром 0,074 мм, то предыдущее сито в этой серии будет иметь отверстия равное 0,074 х 1,414 = 0,104 мм, а последующее 0,074 : 1,414 = 0,043 мм (таблица 24). Ситовой анализ проводится в наборе стандартных лабораторных сит.

Навеска материала помещается на верхнее сито набора и затем весь набор встряхивается на механическом встряхивателе в течение 10-30 мин. Рассев считается законченным, если при контрольном просеивании за 1 минуту через сито проходит не более 1% материала, находящегося на сите.

Таблица 24. Характеристика контрольных сит для ситового анализа с модулем

Число мешРазмер отверстий мм
6,680
3,300
1,400
0,830
0,495
0,295
0,246
0,175
0,147
0,104
0,074
0,053
0,043

Оставшийся на каждом сите материал и выход каждого класса в граммах и в процентах от общей массы пробы записывают в таблицу, причем материал, оставшийся на сите обозначается «+», а прошедший – знаком «-«. В таблице 25 приведен пример записи результатов ситового анализа.

Таблица 25. Результаты ситового анализа

Крупность класса, ммЧастный выход классаСуммарный выход
г%«по плюсу»« по минусу»
-0,59 + 0,427,327,32
– 0,42 + 0,36,3413,6692.68
– 0,3 + 0,2110,2523,9186.34
– 0,21 + 0,158,2932,2076,09
– 0,15 + 0,117,0749,2767,8
– 0,1 + 0,07420,069,2750,73
– 0,074 + 030,7330,73
Исходный продукт

Результаты ситового анализа изображаются в виде графической зависимости с помощью линейной, полулогарифмической или логарифмической шкал. В прямоугольной системе координат характеристика крупности может быть построена по частным выходам отдельных классов ( рис.40 ) и по суммарным выходам. Обычно строят кривую характеристики « по плюсу», т.е. по суммарному остатку материала на ситах, начиная с самых крупных. При этом на оси абсцисс в масштабе откладывается размер отверстий сит в миллиметрах в обычном или логарифмическом масштабе, а на оси ординат – суммарный остаток на ситах в процентах. Суммарная характеристика крупности материала может быть построена и «по минусу» ( рис. 41)

.

Рис. 41. Характеристика крупности материала « по минусу»

. При преобладании в материале крупных зерен кривая имеет выпуклый характер, а при преобладании мелких зерен – вогнутый характер Суммарные характеристики крупности могут иметь (рис.42) выпуклую форму ( кривая 1), прямолинейную (кривая 2) и вогнутую ( кривая 3)

Рис. 42. Кривые суммарных характеристик крупности

По характеру кривой можно судить о распределении материала по крупности. Если кривая имеет прямолинейный характер, то материал характеризуется равномерным распределением зерен по классам крупности. При преобладании в материале крупных зерен кривая имеет выпуклый характер, а при преобладании мелких зерен .

Пользуясь кривой суммарной характеристики можно определить выход класса любой крупности. Для этого из точки, лежащей на оси абсцисс и соответствующей определенному размеру отверстия сита, восстанавливают перпендикуляр до пересечения с кривой и через полученную точку пересечения проводят прямую, параллельную оси абсцисс до пересечения с осью ординат. Точка пересечения соответствует выходу ( в процентах) класса «+», как это показано на рис. 40.

Таким образом, пользуясь графическим изображением гранулометрического состава исходной руды, продуктов дробления, грохочения, измельчения и продуктов обогащения можно определить значения выходов классов различной крупности исходного материала, а также сравнить результаты гранулометрического анализа, определить эффективность работы дробильного, измельчительного и классифицирующего оборудования.

Линейные характеристики используются лишь при узком диапазоне крупности материала, т.е при небольшом количестве классов материалов. При более полном анализе крупности, включающем и результаты седиментационного анализа, построение таких кривых затруднено ввиду того, что график по оси абсцисс получается или очень растянутым или линии в области тонких классов будут сливаться. В этом случае результаты ситового анализа изображают в системе с полулогарифмическими и логарифмическими шкалами. При полулогарифмической сетке по оси абсцисс откладываются логарифмы размеров отверстий сита, а по оси ординат суммарный выход классов. При построении логарифмической кривой по оси ординат откладываются логарифмы суммарных выходов классов крупности , а по оси абсцисс – логарифмы размеров отверстий сит.

Для ускоренного определения выхода одного или двух классов крупности пробу материала в виде пульпы помещают в сосуд определенного объема, масса которого известна. Сосуд вместе с пробой взвешивают, а затем пробу промывают последовательно на одном или двух ситах с отверстиями определенного размера, например, на сите с отверстиями 0,074 и 0,044 мм. Материал, материал, оставшийся после промывке на ситах, попеременно переносят в тот же сосуд, доливая его водой до прежнего объема. Сосуд взвешивают и выход классов определяют по формуле:

γ = , (59)

где В2 – масса сосуда с материалом оставшемся на сите, г,

А – масса сухого сосуда, г

С – объем сосуда, мл.

В1 – масса сосуда с исходной пробой пульпы, г

При необходимости получения гранулометрической характеристики материала мельче 0,044 мм обычно применяют седиментационный или дисперсионный анализ, который основан на разделении минеральных зерен различной крупности по их скорости падения в воде. Дисперсионный анализ проводят методом отмучивания или гидравлической классификации в специальных аппаратах, среди которых наиболее широкое распространение получил аппарат типа АДАП. На этом аппарате проводится дисперсионный анализ тонких материалов в непрерывном потоке воды на пять классов крупности, например, минус 0,044 + 0,020 мм, минус 0,020 + 0,010 мм, минус 0,010 + 0,005 мм и минус 0,005 мм. Продолжительность одного анализа на этом аппарате составляет в среднем от 5 до 24 часов в зависимости от плотности и крупности материала.

Микроскопический анализ проводиться не только для определения минерального состава руды и продуктов обогащения, но и для определения размера очень тонких частиц, определения количества и характера сростков минералов между собой в каждом классе крупности, что дает возможность характеризовать эффективность некоторых процессов, например, измельчения и флотации.

Дата добавления: 2015-06-10 ; просмотров: 6101 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию